【bzoj2699】更新 dp
题目描述
对于一个数列A[1..N],一种寻找最大值的方法是:依次枚举A[2]到A[N],如果A[i]比当前的A[1]值要大,那么就令A[1]=A[i],最后A[1]为所求最大值。假设所有数都在范围[1, K]内,按上面的步骤执行,有多少个长度N的数列满足A[1]被更新的次数恰好为P呢?
输入
本题有多组数据。输入第一行一个数T为数据组数,下面T行每行依次三个数N、K和P。
输出
对每组数据输出一行,为方案数模1000000007的值。
样例输入
3
4 3 2
2 3 1
3 4 1
样例输出
6
3
30
题解
dp
设 $f[i][j][k]$ 表示 $i$ 个数,更新次数为 $j$ ,最大值为 $k$ 的方案数。
那么考虑第 $i$ 个数是否对最大值产生更新来进行转移:
当不产生更新时,前面最大值为 $k$ ,第 $i$ 个数的取值范围为 $[1,k]$ ,因此 $f[i][j][k]=f[i-1][j][k]*k$ ;
当产生更新时,前面最大值取值范围为 $[1,k-1]$ ,第 $i$ 个数的取值为 $k$ ,因此 $f[i][j][k]=\sum\limits_{l=1}^{k-1}f[i-1][j-1][l]$ 。
因此使用前缀和 $sum[i][j][k]=\sum\limits_{l=1}^kf[i][j][l]$ 来优化dp转移,即可预处理出所有的dp值。
最后对于每个询问直接输出答案即可。
时间复杂度 $O(npk)$
#include <cstdio>
#define mod 1000000007
long long sum[155][155][310];
int main()
{
int i , j , k , T , x , y , z;
for(i = 1 ; i <= 300 ; i ++ ) sum[1][1][i] = i;
for(i = 2 ; i <= 150 ; i ++ )
for(j = 1 ; j <= 150 ; j ++ )
for(k = 1 ; k <= 300 ; k ++ )
sum[i][j][k] = (sum[i][j][k - 1] + sum[i - 1][j - 1][k - 1] + (sum[i - 1][j][k] - sum[i - 1][j][k - 1]) * k % mod + mod) % mod;
scanf("%d" , &T);
while(T -- ) scanf("%d%d%d" , &x , &y , &z) , printf("%lld\n" , sum[x][z + 1][y]);
return 0;
}
【bzoj2699】更新 dp的更多相关文章
- ZOJ 3632 Watermelon Full of Water (线段树 区间更新 + dp)
题目大意: 让每天都能吃到西瓜. 最少须要花多少钱. 思路分析: dp[pos] 就表示 要让 前i天每天都有西瓜吃.最少须要花多少钱. 那么假设你买这个西瓜的话. 那么这个西瓜能吃的持续时间都要更 ...
- 持续更新——dp的一些技巧
共菜鸡笔者看的--会慢慢更新,也请看到的大佬留意一眼,指出不足. 对于一些对部分点的二维\(dp\),状态从左上角继承而来时,对于一个点\((x,y)\),对它编号\(x*m+y\),按照这个顺序\( ...
- bzoj2699 更新
题意 对于一个数列A[1..N],一种寻找最大值的方法是:依次枚举A[2]到A[N],如果A[i]比当前的A[1]值要大,那么就令A[1]=A[i],最后A[1]为所求最大值.假设所有数都在范围[1, ...
- DP专题(不定期更新)
1.UVa 11584 Partitioning by Palindromes(字符串区间dp) 题意:给出一个字符串,划分为若干字串,保证每个字串都是回文串,同时划分数目最小. 思路:dp[i]表示 ...
- poj3311 Hie with the Pie (状态压缩dp,旅行商)
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3160 Accepted: 1613 ...
- fzu2188 状压dp
G - Simple String Problem Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & ...
- LightOJ1283 Shelving Books(DP)
题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1283 Description You are a librarian ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- CodeForces #369 C. Coloring Trees DP
题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少. K:连续的颜色为一组 ...
随机推荐
- Java基础——语法基础
一.标识符 1.不能使用数字开头 2.不能使用关键字 (更多命名规范,参见基础加强随笔) 二.数据类型 主要分为四种: 整形: byte 1字节8位 范围 -128~127 short 2 ...
- 20145202马超《java》实验5
两人一组结对编程: 参考http://www.cnblogs.com/rocedu/p/6766748.html#SECDSA 结对实现中缀表达式转后缀表达式的功能 MyBC.java 结对实现从上面 ...
- 北京Uber优步司机奖励政策(4月6日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- MySql慢查询日志——开启/查看/删除
1,开启慢查询日志 修改mysql.ini文件,加入如下配置: [mysqld] log-slow-queries=H:\mysql_log\slow_query.log long-query-tim ...
- P2664 树上游戏
P2664 树上游戏 https://www.luogu.org/problemnew/show/P2664 分析: 点分治. 首先关于答案的统计转化成计算每个颜色的贡献. 1.计算从根出发的路径的答 ...
- Web自动化selenium技术快速实现爬虫
selenium是大家众所周知的web自动化测试框架,主要用来完成web网站项目的自动化测试,但其实如果要实现一个web爬虫,去某些网站爬取数据,其实用selenium来实现也很方便. 比如,我们现在 ...
- Python学习-猜数字游戏
菩萨蛮·黄鹤楼 茫茫九派流中国,沉沉一线穿南北.烟雨莽苍苍,龟蛇锁大江. 黄鹤知何去,剩有游人处.把酒酹滔滔,心潮逐浪高! --coding:UTF-8-- import random secret ...
- Python内嵌函数与Lambda表达式
//2018.10.29 内嵌函数与lambda 表达式 1.如果在内嵌函数中需要改变全局变量的时候需要用到global语句对于变 量进行一定的说明与定义 2.内部的嵌套函数不可以直接在外部进行访问 ...
- Unity编辑器 - 编辑器控制特效播放
编辑器控制特效播放 Unity的动画编辑器不能预览粒子系统的播放,为了方便预览特效,设想制作一个预览特效的工具,通常一个特效有三种组件: - Animation - Animator - Partic ...
- (C#)设计模式之状态模式
1.状态模式 当一个对象的内在状态改变时允许改变其行为,这个对象看起像是改变了其类. *状态模式主要解决的是当控制一个对象的状态转换的条件表达式过于复杂时,可以将状态的判断逻辑转移到表示不同状态的一系 ...