传送门

听说是多项式求逆的模板题,以后不怕没地方练多项式求逆啦哈哈……

……

我们设使用一个氨基酸能组成质量为$n$的多肽数量这个数列为$\{a_n\}$,设它的生成函数为$A(x)$,显然有

\begin{align}A(x)=\sum_{i=0}^\infty \sum_{j=0}^m[C_j=i]\end{align}

即$A(x)$的$i$次方系数即为相对分子质量为$i$的氨基酸数量。

我们要求的是一个数列${b_n}$,它的第$n$项即为使用任意数目的氨基酸能组成质量为$n$的多肽数量,设它的生成函数为$B(x)$,那么有

\begin{align}A(x)=\sum_{i=0}^\infty B(x)^i\end{align}

右边化成封闭形式,得

\begin{align}A(x)=\frac 1{1-B(x)}\end{align}

多项式求逆即可,答案即为$[x^n]A(x)$。顺便一提,1005060097的原根是5。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=,p=,g=;
void NTT(int*,int,int);
void getinv(int*,int*,int);
int qpow(int,int,int);
int n,m,N=,x,A[maxn]={},B[maxn];
int main(){
freopen("polypeptide.in","r",stdin);
freopen("polypeptide.out","w",stdout);
scanf("%d%d",&n,&m);
while(N<=n)N<<=;
while(m--){
scanf("%d",&x);
A[x]=(A[x]+p-)%p;
}
A[]=(A[]+)%p;
getinv(A,B,N);
printf("%d",B[n]);
return ;
}
void NTT(int *A,int n,int tp){
for(int i=,j=,k;i<n-;i++){
k=n;
do j^=(k>>=);while(j<k);
if(i<j)swap(A[i],A[j]);
}
for(int k=;k<=n;k<<=){
int wn=qpow(g,(tp>?(p-)/k:(p-)/k*(long long)(p-)%(p-)),p);
for(int i=;i<n;i+=k){
int w=;
for(int j=;j<(k>>);j++,w=(long long)w*wn%p){
int a=A[i+j],b=(long long)w*A[i+j+(k>>)]%p;
A[i+j]=(a+b)%p;
A[i+j+(k>>)]=(a-b+p)%p;
}
}
}
if(tp<){
int inv=qpow(n,p-,p);
for(int i=;i<n;i++)A[i]=(long long)A[i]*inv%p;
}
}
void getinv(int *A,int *C,int n){
static int B[maxn];
fill(C,C+n,);
C[]=qpow(A[],p-,p);
for(int k=;k<=n;k<<=){
copy(A,A+k,B);
fill(B+k,B+(k<<),);
NTT(B,k<<,);
NTT(C,k<<,);
for(int i=;i<(k<<);i++)C[i]=C[i]*((-((long long)B[i]*C[i]%p)+p)%p)%p;
NTT(C,k<<,-);
fill(C+k,C+(k<<),);
}
}
int qpow(int a,int b,int p){
int ans=;
for(;b;b>>=,a=(long long)a*a%p)if(b&)ans=(long long)ans*a%p;
return ans;
}

其实我对NTT和生成函数只是刚入门而已……我们的征途是星辰大海……

COGS2259 异化多肽的更多相关文章

  1. [Nescafé41]异化多肽(多项式求逆元)

    2015年的题,应该是将形式幂级数引入国内的元老级题目. 大意:给定一个大小为m的正整数序列和n,问有多少种选法可以凑成n,每个数可以选多次,种类不同算不同方案.$n,m,C \leqslant 10 ...

  2. COGS 2259 异化多肽——生成函数+多项式求逆

    题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259 详见:https://www.cnblogs.com/Zinn/p/10054569 ...

  3. COGS 2259 异化多肽 —— 生成函数+多项式求逆

    题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259 如果构造生成函数是许多个 \( (1+x^{k}+x^{2k}+...) \) 相乘 ...

  4. AHOI2018训练日程(3.10~4.12)

    (总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...

  5. CodeForces 632E Thief in a Shop

    题意:给你n种物品,每种无限个,问恰好取k个物品能组成哪些重量.n<=1000,k<=1000,每种物品的重量<=1000. 我们搞出选取一种物品时的生成函数,那么只要对这个生成函数 ...

  6. 基于tomcat与Spring的实现差异化配置方案

    起因 在实际开发过程中经常需要加载各种各样的配置文件..比如数据库的用户名密码,要加载的组件,bean等等..但是这种配置在各个环境中经常是不一样的....比如开发环境和测试环境,真实的生产环境.. ...

  7. (转)iOS Wow体验 - 第三章 - 用户体验的差异化策略

    本文是<iOS Wow Factor:Apps and UX Design Techniques for iPhone and iPad>第三章译文精选,其余章节将陆续放出.上一篇:Wow ...

  8. Android Gradle基于参数化配置实现差异化构建

    一.背景: 项目中有一些特殊的需求,如个别渠道集成腾讯bugly,个别渠道集成易观统计,不同的渠道集成不同的推送策略(如Oppo渠道优先Opush推送),不同的渠道拥有不同的第三方登录集成等等.这些需 ...

  9. Bing词典vs有道词典比对测试报告——功能篇之辅助功能,差异化功能及软件的效能

    1.辅助功能: 和有道相比,必应的词典加入了换肤功能,用户可以选择喜欢的颜色,而且必应的皮肤也比较多,这一点设计给必应增色不少. 相对而言,有道则加入了调节客户端字体的大小,如下,也比较人性化 2.差 ...

随机推荐

  1. JAVA输入随笔

    做题时经常遇到输入的问题,很麻烦 写一点点自己对于输入的随笔,以备后查 这里都以整数为例,其他类型的话换成相应方法就行了 1.知道一共多少行,每一行只有一个整数 这是比较简单的输入,可以用Scanne ...

  2. 906 AlvinZH的奇幻猜想----整数乘积(背包DP大作战O)

    906 AlvinZH的奇幻猜想----整数乘积 思路 难题.动态规划. 将数字串按字符串输入,处理起来更方便些. dp[i][j]:表示str[0~i]中插入j个乘号时的乘积最大值.状态转移方程为: ...

  3. CentOS 7 查看和设置防火墙状态

    CentOS7 默认使用的是firewall作为防火墙 查看防火墙状态 firewall-cmd --state 停止firewall systemctl stop firewalld.service ...

  4. 对EM算法的理解

    EM算法中要寻找的参数θ,与K-means聚类中的质心是对应的,在高斯混合模型中确定了θ,便可为样本进行类别的划分,属于哪个高斯分布的概率大就是哪一类,而这一点与K-means中的质心一样,质心确定了 ...

  5. AXI协议(一)

    最近弄Zynq,不懂AXI协议Zynq很难玩儿的转.这些笔记主要攻克AXI中的一些难题. 所有的AXI4包含了5个不同的通道:     (1)读/写地址通道(Read/Write address ch ...

  6. python 类,对象

    声明类 ''' class 类名: '类的文档字符串' 类体 ''' #我们创建一个类 class Data: pass 声明类 class Person: #定义一个人类 role = 'perso ...

  7. vue 深度响应初步了解(检测data对象数据变化)

    当你把一个普通的 JavaScript 对象传给 Vue 实例的 data 选项,Vue 将遍历此对象所有的属性,并使用Object.defineProperty把这些属性全部转为 getter/se ...

  8. Mac系统下Eclipse代码联想功能(代码助手,代码提示)快捷键

    Eclipse for mac 代码提示(代码助手,代码联想)快捷键修改一.每次输入都自动提示点击Eclipse,使其成为第一响应者,preferences->Java->Editor-& ...

  9. 用代码如何检测一个android程序是否在运行

    /** * 检测一个android程序是否在运行 * @param context * @param PackageName * @return */ public static boolean is ...

  10. (转)CentOS分区操作详解

    CentOS分区操作详解 原文:http://blog.csdn.net/yonggeit/article/details/77924393 磁盘分区 分区格式的两种选择:MBR和GPT 分区命令: ...