[HNOI2008]玩具装箱(Link

题目描述
\(P\)教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。\(P\)教授有编号为\(1...N\)的\(N\)件玩具,第\(i\)件玩具经过压缩后变成一维长度为\(C[i]\).为了方便整理,\(P\)教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为\(x=j-i+\sum_{k=j}^{k<=j}C[k]\) 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为\(x\),其制作费用为\((X-L)^2\).其中\(L\)是一个常量。\(P\)教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过\(L\)。但他希望费用最小.
输入输出格式
输入格式:
第一行输入两个整数\(N\),\(L\).接下来\(N\)行输入\(C[i]\).\(1<=N<=50000\),\(1<=L,Ci<=10^7\)
输出格式:
输出最小费用

简单来说,我们有一个长度为\(L\)的序列\(C[i]\),要求将序列分成若干段,每一段如果从\(i\)到\(j\),整段的和为\(S\),那么就会产生\((j-i+S-L)^2\)的代价,要求得到最小的代价和。
那么\(S\)就是\(\sum_{k=i}^{k<=j}C[k]\),那么我们就可以把式子简化成这样:\(\sum_{k=i}^{k<=j}(C[k]+1)-(L+1)\),所以你可以发现如果将输入的所有\(C[i]\)加上\(i\)并且将\(L\)全部加上\(1\)的话,费用就变成了\((S-L)^2\)。
设\(sum[i]\)为\(i\)点的前缀和,我们得到\(DP\)式子为\(f[i]=min_{j=0}^{j<=i}(f[j]+(sum[i]-sum[j]-L+i-j-1)^2)\)
嗯,按照上面的节奏,我们将\(j\)范围内的式子变一下:\(f[i]=min_{j=0}^{j<=i}(f[j]+((sum[i]+i)-(sum[j]+j)-L)^2)\)
然后我们令\(s[i]=sum[i]+i\),式子就变成了这样:\(f[i]=min_{j=0}^{j<=i}(f[j]+(s[i]-s[j]-L)^2)\)
然后把里面的平方展开\(f[i]=min_{j=0}^{j<=i}(f[j]+s[i]^2+(s[j]+L)^2-2*s[i]*(s[j]+L))\)
然后稍微一个移项\(f[i]+2*s[i]*min_{j=0}^{j<=i}(s[j]+L)=f[j]+s[i]^2+(s[j]+L)^2\)
然后我们看这个式子的格式就很熟悉了

b+kx=y

对!就是前面搞的直线的解析式!所以我们知道这么一个转化

\(x=s[j]+L\)

\(y=f[j]+s[i]^2+(s[j]+L)^2\)

并且我们还知道\(dp[i]\)就是上面的\(y=kx+b\)的截距。那么我们将所有的\((x=s[j]+L,f[j]+s[i]^2+(s[j]+L)^2)\)点全部加到平面直角坐标系上,然后维护下凸壳就可以啦!并且你可以发现斜率\(k=2*s[i]\)是一个单调递增的哦~
并且这里还有一个很重要的地方:大家看上面的那个\(y\)的方程是\(y=f[j]+s[i]^2+(s[j]+L)^2\)而实际上这里并不是一个关于\(i,j\)的双变量,我们
至于凸壳的寻找方法和最优点的寻找方法上面已经有比较详细的介绍了,就不再多说,上代码讲解就好了吧。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MAXN 100010
#define INF 0x7fffffff
#define ll long long
using namespace std;
ll n,L,s[MAXN],f[MAXN];
ll q[MAXN],head,tail;
inline void read(ll &x){
    char c=getchar(); x=0;
    while(c<'0'||c>'9') c=getchar();
    while(c<='9'&&c>='0') x=x*10+c-48,c=getchar();
}
inline void print(ll x){
    ll num=0; char c[15];
    while(x) c[++num]=(x%10)+48,x/=10;
    while(num) putchar(c[num--]);
    putchar('\n');
}
inline double x(ll j){
    return s[j];
}
inline double y(ll i){
    return f[i]+(s[i]+L-1)*(s[i]+L-1);
}
inline double slope(ll i,ll j){
    return (y(j)-y(i))/(x(j)-x(i));
}
int main(){
    read(n); read(L);
    L++; head=1; tail=1;
    for(int i=1;i<=n;i++){
        ll x;  read(x);
        s[i]=s[i-1]+x;
        s[i]+=i;
    }
    for(int i=1;i<=n;i++){
        while(head<tail&&slope(q[head],q[head+1])<2*s[i])
        head++;  ll j=q[head];
        f[i]=f[j]+(s[i]-s[j]-L)*(s[i]-s[j]-L);
        while(head<tail&&slope(q[tail-1],q[tail])>slope(q[tail],i))
            tail--;
        q[++tail]=i;
    }
    print(f[n]);
    return 0;
}

[LuoguP3195] [HNOI2008]玩具装箱TOY的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9281  Solved: 3719[Submit][St ...

  4. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  5. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  7. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  8. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  9. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

随机推荐

  1. mysql根据时间查询日期的优化

    例如查询昨日新注册用户,写法有如下两种: EXPLAIN select * from chess_user u where DATE_FORMAT(u.register_time,'%Y-%m-%d' ...

  2. mysql case when的使用

    SELECT (CASE payType WHEN 1 THEN '微信' WHEN 2 THEN '支付宝' ELSE '余额' END) as type, count(payType) FROM ...

  3. java中如何使用BigDecimal使得Double类型保留两位有效数字

    一.场景:从数据表中读出Decimal类型的数据直接塞给Double类型的对象时,并不会有什么异常. 如果要再此基础上计算,就会发生异常. 比如:读出数据为0.0092,将其乘以100,则变成了0.9 ...

  4. vue-构建项目相关事项

    安装 :vue-cli npm install -g vue-cli 使用webpack 打包 vue 項目的創建: vue init webpack 項目名子 生產基本的項目結構后 進入到項目目錄 ...

  5. 表单校验常用原生js库

    1.字符串去除左右空格继承形式// 除去左右空格String.prototype.Trim = function() { return this.replace(/(^\s*)|(\s*$)/g, & ...

  6. 19_ThreadLocal

    [概述] 线程局部变量,是一种多线程间并发访问变量的解决方案.与synchronized等加锁的方式不同,ThreadLocal完全不提供锁,而使用以空间换时间的手段,为每个线程提供变量的独立副本,以 ...

  7. Raft协议--中文论文介绍

    本篇博客为著名的 RAFT 一致性算法论文的中文翻译,论文名为<In search of an Understandable Consensus Algorithm (Extended Vers ...

  8. DELPHI SOKET 编程--使用TServerSocket和TClientSocket

    本文采用delphi7+TServerSocket+TClientSocket; 笔者在工作中遇到对局域网中各工作站与服务器之间进行Socket通信的问题.现在将本人总结出来的TServerSocke ...

  9. SpringMVC学习(一)——概念、流程图、源码简析

    学习资料:开涛的<跟我学SpringMVC.pdf> 众所周知,springMVC是比较常用的web框架,通常整合spring使用.这里抛开spring,单纯的对springMVC做一下总 ...

  10. CSS animation online生成工具

    利用HTML5.css的一些动画功能,可以设计出非常炫酷的动画,但是由于并不是所有的浏览器都支持,所以可能需要prefix,这个过程是比较烦的.一个比较好用的线上工具: http://matthewl ...