[HNOI2008]玩具装箱(Link

题目描述
\(P\)教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。\(P\)教授有编号为\(1...N\)的\(N\)件玩具,第\(i\)件玩具经过压缩后变成一维长度为\(C[i]\).为了方便整理,\(P\)教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为\(x=j-i+\sum_{k=j}^{k<=j}C[k]\) 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为\(x\),其制作费用为\((X-L)^2\).其中\(L\)是一个常量。\(P\)教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过\(L\)。但他希望费用最小.
输入输出格式
输入格式:
第一行输入两个整数\(N\),\(L\).接下来\(N\)行输入\(C[i]\).\(1<=N<=50000\),\(1<=L,Ci<=10^7\)
输出格式:
输出最小费用

简单来说,我们有一个长度为\(L\)的序列\(C[i]\),要求将序列分成若干段,每一段如果从\(i\)到\(j\),整段的和为\(S\),那么就会产生\((j-i+S-L)^2\)的代价,要求得到最小的代价和。
那么\(S\)就是\(\sum_{k=i}^{k<=j}C[k]\),那么我们就可以把式子简化成这样:\(\sum_{k=i}^{k<=j}(C[k]+1)-(L+1)\),所以你可以发现如果将输入的所有\(C[i]\)加上\(i\)并且将\(L\)全部加上\(1\)的话,费用就变成了\((S-L)^2\)。
设\(sum[i]\)为\(i\)点的前缀和,我们得到\(DP\)式子为\(f[i]=min_{j=0}^{j<=i}(f[j]+(sum[i]-sum[j]-L+i-j-1)^2)\)
嗯,按照上面的节奏,我们将\(j\)范围内的式子变一下:\(f[i]=min_{j=0}^{j<=i}(f[j]+((sum[i]+i)-(sum[j]+j)-L)^2)\)
然后我们令\(s[i]=sum[i]+i\),式子就变成了这样:\(f[i]=min_{j=0}^{j<=i}(f[j]+(s[i]-s[j]-L)^2)\)
然后把里面的平方展开\(f[i]=min_{j=0}^{j<=i}(f[j]+s[i]^2+(s[j]+L)^2-2*s[i]*(s[j]+L))\)
然后稍微一个移项\(f[i]+2*s[i]*min_{j=0}^{j<=i}(s[j]+L)=f[j]+s[i]^2+(s[j]+L)^2\)
然后我们看这个式子的格式就很熟悉了

b+kx=y

对!就是前面搞的直线的解析式!所以我们知道这么一个转化

\(x=s[j]+L\)

\(y=f[j]+s[i]^2+(s[j]+L)^2\)

并且我们还知道\(dp[i]\)就是上面的\(y=kx+b\)的截距。那么我们将所有的\((x=s[j]+L,f[j]+s[i]^2+(s[j]+L)^2)\)点全部加到平面直角坐标系上,然后维护下凸壳就可以啦!并且你可以发现斜率\(k=2*s[i]\)是一个单调递增的哦~
并且这里还有一个很重要的地方:大家看上面的那个\(y\)的方程是\(y=f[j]+s[i]^2+(s[j]+L)^2\)而实际上这里并不是一个关于\(i,j\)的双变量,我们
至于凸壳的寻找方法和最优点的寻找方法上面已经有比较详细的介绍了,就不再多说,上代码讲解就好了吧。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MAXN 100010
#define INF 0x7fffffff
#define ll long long
using namespace std;
ll n,L,s[MAXN],f[MAXN];
ll q[MAXN],head,tail;
inline void read(ll &x){
    char c=getchar(); x=0;
    while(c<'0'||c>'9') c=getchar();
    while(c<='9'&&c>='0') x=x*10+c-48,c=getchar();
}
inline void print(ll x){
    ll num=0; char c[15];
    while(x) c[++num]=(x%10)+48,x/=10;
    while(num) putchar(c[num--]);
    putchar('\n');
}
inline double x(ll j){
    return s[j];
}
inline double y(ll i){
    return f[i]+(s[i]+L-1)*(s[i]+L-1);
}
inline double slope(ll i,ll j){
    return (y(j)-y(i))/(x(j)-x(i));
}
int main(){
    read(n); read(L);
    L++; head=1; tail=1;
    for(int i=1;i<=n;i++){
        ll x;  read(x);
        s[i]=s[i-1]+x;
        s[i]+=i;
    }
    for(int i=1;i<=n;i++){
        while(head<tail&&slope(q[head],q[head+1])<2*s[i])
        head++;  ll j=q[head];
        f[i]=f[j]+(s[i]-s[j]-L)*(s[i]-s[j]-L);
        while(head<tail&&slope(q[tail-1],q[tail])>slope(q[tail],i))
            tail--;
        q[++tail]=i;
    }
    print(f[n]);
    return 0;
}

[LuoguP3195] [HNOI2008]玩具装箱TOY的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9281  Solved: 3719[Submit][St ...

  4. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  5. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  7. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  8. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  9. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

随机推荐

  1. IO流之打印流

    打印流的概述(只有输出就是只与数据目的有关,不会抛出IO异常) 打印流添加输出数据的功能,使它们能够方便地打印各种数据值表示形式. 打印流根据流的分类: l  字节打印流  PrintStream l ...

  2. nginx服务器绑定多个域名、支持pathinfo路由、隐藏index.php入口文件

    这篇文章仅仅是操作,解释说明部分待更新. 1. 修改nginx的配置文件(我的配置文件在/etc/nginx/nginx.conf) [root@xxx ~]# find / -name nginx. ...

  3. [SYZOI Round1] 滑稽♂树

    题面 传送门 Sol 我也不知道哪里来的题目哪里来的\(OJ\) 子树变成\(DFS\)序后就是裸的树套树 # include <bits/stdc++.h> # define RG re ...

  4. Generic/Template Programming in Flink

    Generic/Template Programming in Flink SourceFunction<T> @Public public interface SourceFunctio ...

  5. VS2010环境开发Teamcenter ITK

    前言 这篇文章主要是用Teamcenter ITK开发的入门配置教程.几个月前学习ITK开发时,领导要求将配置过程整理成学习笔记.最近同事要做ITK开发,就发给他了.感觉这篇文章对别人还是有帮助的,决 ...

  6. atom 常用配置

    基本配置 setting 位于 File -> setting 显示HTML标签闭合的竖线 Setting -> Editor Setting -> 勾选 Show Indent G ...

  7. webStrorm 简单配置

    1.主题配色 主题设置 File -> Settings -> Appearance & Behavior -> Appearance ->Theme.    ===& ...

  8. dctcp example-ns2

    set N 8 set B 250 set K 65 set RTT 0.0001 set simulationTime 1.0 set startMeasurementTime 1 set stop ...

  9. Java中short、int、long、float、double的取值范围

    一.基本数据类型的特点,位数,最大值和最小值.1.基本类型:short 二进制位数:16 包装类:java.lang.Short 最小值:Short.MIN_VALUE=-32768 (-2的15此方 ...

  10. 图解:TCP协议中的三次握手和四次挥手

    建立TCP需要三次握手才能建立,而断开连接则需要四次握手.整个过程如下图所示: 先来看看如何建立连接的. 首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资 ...