题目描述:

  在已知一个离散平方根的情况下,按照从小到大的顺序输出其他所有的离散平方根。

  在模n意义下,非负整数x的离散平方根是满足0<=r<n且r2=x(mod n)的整数r。

解题思路:

  假设要求的一个离散平方根为r1,则有:

    r2=x(mod n)

    r12=x(mod n)

  两式相减可得:

    r2-r12=0(mod n)

  即:

    r2-r12=kn

  令:

    a*b=n

  则有:

    r-r1=0(mod a)

    r+r1=0(mod b)

  即:

    r-r1=k1a

    r+r1=k2b

  两式相加可得:

    k1a+k2b=2r

  

  据此,枚举n的所有约数,得到所有可能的a和b。

  再利用扩展欧几里得算法解出所有的k2,代入r-r1=k1a即可得到r1

代码在这:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll; set<ll> ans;
ll x,n,r; //扩展欧几里得算法
void gcd(ll a,ll b,ll& d,ll& x,ll& y)
{
if(b==)
{
d=a;
x=;
y=;
}
else
{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
} void solve(ll a,ll b)
{
ll k1,k2,d;
gcd(a,b,d,k1,k2); if(*r%d)
return; k2*=(*r/d); ll aa=a/d;
k2%=aa;//k2是所有形如k2+k*aa的整数,最小的k2对应最小的r1 ll r1=k2*b-r;
while(r1<n)
{
if(r1>=&&r1*r1%n==x)
ans.insert(r1); r1+=aa*b;
}
} int main()
{
int ca=;
while(~scanf("%lld%lld%lld",&x,&n,&r))
{
if(x==&&n==&&r==)
break; ans.clear(); for(ll i=;i*i<=n;i++)
if(n%i==)
{
solve(i,n/i);
solve(n/i,i);
} printf("Case %d: %lld",++ca,*ans.begin());
for(set<ll>::iterator it=ans.begin();it!=ans.end();it++)
if(it!=ans.begin())
printf(" %lld",*it);
printf("\n");
}
return ;
}

UVALive 4270 Discrete Square Roots的更多相关文章

  1. UVALive - 4270 Discrete Square Roots (扩展欧几里得)

    给出一组正整数$x,n,r$,使得$r^2\equiv x(mod\: n)$,求出所有满足该等式的$r$. 假设有另一个解$r'$满足条件,则有$r^2-r'^2=kn$ 因式分解,得$(r+r') ...

  2. UVA 1426 - Discrete Square Roots(数论)

    UVA 1426 - Discrete Square Roots 题目链接 题意:给定X, N. R.要求r2≡x (mod n) (1 <= r < n)的全部解.R为一个已知解 思路: ...

  3. Discrete Square Roots UVALive - 4270(拓展欧几里得)

    a≡b(mod n)的含义是“a和b除以n的余数相同”,其充要条件是“a-b是n的整数倍”: 求所有满足条件r^2=x(mod m)的r 题目已经给定了一个初始的r,x,m #include < ...

  4. UVa 1426 Discrete Square Roots (扩展欧几里德)

    题意:给定 x,n,r,满足 r2 ≡ x mod(n) ,求在 0 ~ n 内满足 rr2 ≡ x mod(n) 的所有的 rr. 析:很明显直接是肯定不行了,复杂度太高了. r2 ≡ x mod( ...

  5. UVA1426 Discrete Square Roots

    思路:\(exgcd\) 提交:\(2\)次 错因:输出格式错误OTZ 题解: 求:\(r^2 ≡ x \mod N , 0 \leq r < N\),并且题目会给出 \(x,N\) 和一个合法 ...

  6. Square roots

    Loops are often used in programs that compute numerical results by starting with an approximate answ ...

  7. UVALive 4867 Maximum Square 贪心

    E - Maximum Square Time Limit:4500MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit ...

  8. UVALive 7457 Discrete Logarithm Problem (暴力枚举)

    Discrete Logarithm Problem 题目链接: http://acm.hust.edu.cn/vjudge/contest/127401#problem/D Description ...

  9. 欧拉工程第64题:Odd period square roots

    题目链接 找循环位数是奇数的数有多少个 这个自己很难写出来,完全不能暴力 维基百科链接 维基百科上面说的很好,上面的算法实现就好了. 就是上面的 Java程序: package project61; ...

随机推荐

  1. Tomcat 服务器介绍

    Tomcat 目录介绍 Tomcat 主目录有 bin, conf, lib, logs, temp, webapps, work 7个文件夹 bin 目录 主要用来存放 tomcat 命令 .sh ...

  2. DHTML 简介

    DHTML, 动态的 html, 不是一门语言, 是多项技术综合体的简称.其中包括了 html, CSS, DOM, javascript. HTML : 负责提供标签, 对数据进行封装,目的是便于对 ...

  3. 剑指Offer——斐波那契数列

    题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 分析: 递归解法肯定相当耗时. 因为当n=4时,程序是这样子递归运算的:Fibonacci( ...

  4. JDK源代码学习系列05----LinkedList

                                             JDK源代码学习系列05----LinkedList 1.LinkedList简单介绍 LinkedList是基于双向 ...

  5. 安装指定版本的Ionic或Cordova(转载)

    安装ionic 及 cordova npm install -g cordova ionic 更新命令 npm update -g cordova ionic 安装特定版本 npm install - ...

  6. android studio本地gradle

    1.从网站上下载http://services.gradle.org/distributions/ 2.打开工程里的gradle-wrapper.properties, distributionUrl ...

  7. Redis四(Set操作)

    1.Set操作 Set集合就是不允许重复的列表 集合操作(无序) sadd(name,values) 1 # name对应的集合中添加元素 scard(name) 1 获取name对应的集合中元素个数 ...

  8. JVM原理及内存结构

    JVM是按照运行时数据的存储结构来划分内存结构的,JVM在运行java程序时,将它们划分成几种不同格式的数据,分别存储在不同的区域,这些数据统一称为运行时数据.运行时数据包括java程序本身的数据信息 ...

  9. k8s使用ceph作为后端存储挂载

    一.在ceph集群上操作: 1.创建池(主要使用存储类来进行持久卷的挂载,其他的挂载方式不好使也太麻烦):ceph osd pool create k8s 64 二.在k8s上操作: 1.安装客户端( ...

  10. 使用GoogleCode作SVN服务器的一些问题及解决办法

    1.首先最主要的一个问题,就是注册GoogleCode和安装SVN工具. 网上教程很多,不一一赘述.http://www.th7.cn/Program/net/201305/136059.shtml ...