poj 1330(初探LCA)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 23795 | Accepted: 12386 |
Description

In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.
Output
Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5
Sample Output
4
3
Source
下面这段模板代码引自某位大神的博客 http://www.cppblog.com/menjitianya/archive/2015/12/10/212447.html
void LCA_Tarjan(int u) {
//题意:t组测试用例,输入n,接下来输入n-1条边 组成一棵树,第n组数据代表询问a b之间最近公共祖先
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
const int MAX = ;
vector<int> mp[MAX];
int father[MAX];
int indegree[MAX]; ///入度为0的就是根节点
int _rank[MAX]; ///利用启发式合并防止树成链
int vis[MAX];
int ances[MAX];
int A,B;
void init(int n){
for(int i=;i<=n;i++){
ances[i]=;
vis[i]=;
_rank[i] = ;
indegree[i]=;
father[i] = i;
mp[i].clear();
}
}
int _find(int x){
if(x==father[x]) return x;
return father[x] = _find(father[x]);
}
void _union(int a,int b){
int x = _find(a);
int y = _find(b);
father[x]=y;
}
int Tarjan(int u)
{
for (int i=;i<mp[u].size();i++)
{
Tarjan(mp[u][i]);
_union(u,mp[u][i]);
ances[_find(u)]=u;
}
vis[u]=;
if (A==u && vis[B]) printf("%d\n",ances[_find(B)]);
else if (B==u && vis[A]) printf("%d\n",ances[_find(A)]);
return ;
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--){
int n;
scanf("%d",&n);
init(n);
int a,b;
for(int i=;i<n;i++){
scanf("%d%d",&a,&b);
mp[a].push_back(b);
indegree[b]++;
}
scanf("%d%d",&A,&B);
for(int i=;i<=n;i++){
if(indegree[i]==){
Tarjan(i);
break;
}
}
}
return ;
}
poj 1330(初探LCA)的更多相关文章
- POJ 1330 (LCA)
http://poj.org/problem?id=1330 题意:给出一个图,求两个点的最近公共祖先. sl :水题,贴个模板试试代码.本来是再敲HDU4757的中间发现要用LCA, 操蛋只好用这 ...
- POJ 1330(LCA/倍增法模板)
链接:http://poj.org/problem?id=1330 题意:q次询问求两个点u,v的LCA 思路:LCA模板题,首先找一下树的根,然后dfs预处理求LCA(u,v) AC代码: #inc ...
- poj 1330(RMQ&LCA入门题)
传送门:Problem 1330 https://www.cnblogs.com/violet-acmer/p/9686774.html 参考资料: http://dongxicheng.org/st ...
- Nearest Common Ancestors POJ - 1330 (LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 34657 Accept ...
- POJ 1330 Tarjan LCA、ST表(其实可以数组模拟)
题意:给你一棵树,求两个点的最近公共祖先. 思路:因为只有一组询问,直接数组模拟好了. (写得比较乱) 原题请戳这里 #include <cstdio> #include <bits ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)
/* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...
随机推荐
- Java 匿名内部类 只能访问final变量的原因
文章来源:http://blog.sina.com.cn/s/blog_4b6f8d150100qni2.html 1)从程序设计语言的理论上:局部内部类(即:定义在方法中的内部类),由于本身就是在方 ...
- 2-17作业 数据库和shell综合练习
1. 使用shell把“12306用户名和密码库-不要使用记事本打开会卡死-解压后可使用word或ultraedit打开.rar”中的所有记录成生sql语句,然后把sql导入数据库,成一个uPwd_1 ...
- OS开发中的事件处理(二)-事件传递,响应者链条
事件处理的事件传递 简介: 发生触摸事件后,系统会将该事件加入到一个由UIApplication管理的事件 队列中,UIApplication会从事件队列中取出最前面的事件,并将事件分发下去以便处理, ...
- [转载]系统管理:update-alternatives
http://blog.csdn.net/dbigbear/article/details/4398961 好吧,其实博主也是转载的. update-alternatives --display | ...
- Moodle配置
Moodle配置 1. 内部设置 在 Moodle 站点管理员界面中有一系列的配置页面(可以从'设置' 块中访问 '网站管理'区).这里有一些重要的系统设置,你需要进行检查. 根据提示信息并结合实 ...
- Hibernate入门(4)- Hibernate数据操作
Hibernate加载数据 Session.get(Class clazz, Serializable id) clazz:需要加载对象的类,例如:User.class id:查询条件(实现了序列化接 ...
- resultAPI示例
什么是Restfull API Restfull API 从字面就可以知道,他是rest式的接口,所以就要先了解什么是rest rest 不是一个技术,也不是一个协议 rest 指的是一组架构约束条件 ...
- performSelector支持多参数
默认的performSelector支持最多传递两个参数,要想传递超过两个的参数,需要使用NSInvocation来模拟performSelector的行为,如下: - (id)performSele ...
- Spring cookie 实战(山东数漫江湖)
Cookie是什么 简单来说,cookie就是浏览器储存在用户电脑上的一小段文本文件.cookie 是纯文本格式,不包含任何可执行的代码.一个web页面或服务器告知浏览器按照一定规范来储存这些信息,并 ...
- MSSQL备份脚本
) ) ) ),),':',''),' ',''),'-',''),'.','') set @name=N'DEMO'+@temp+'-完整 数据库 备份' set @disk=N'F:\Backup ...