Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 23795   Accepted: 12386

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

下面这段模板代码引自某位大神的博客 http://www.cppblog.com/menjitianya/archive/2015/12/10/212447.html

void LCA_Tarjan(int u) { 

        make_set(u);                               // 注释1
        ancestor[ find(u) ] = u;                   // 注释2
        for(int i = 0; i < edge[u].size(); i++) {  // 注释3
            int v = edge[u][i].v; 
            LCA_Tarjan(v);                         // 注释4
            merge(u, v);                           // 注释5
            ancestor[ find(u) ] = u;               // 注释6
        }
        colors[u] = 1;                             // 注释7
        for(int i = 0; i < lcaInfo[u].size(); i++) {
            int v = lcaInfo[u][i].v;
            if(colors[v]) {                        // 注释8
                lcaDataAns[ lcaInfo[u][i].idx ].lca = ancestor[ find(v) ];
            }
        }
    }
    注释1:创建一个集合,集合中只有一个元素u,即{ u }
    注释2:因为u所在集合只有一个元素,所以也可以写成ancestor[u] = u
    注释3:edge[u][0...size-1]存储的是u的直接子结点
    注释4:递归计算u的所有直接子结点v
    注释5:回溯的时候进行集合合并,将以v为根的子树和u所在集合进行合并
    注释6:对合并完的集合设置集合对应子树的根结点,find(u)为该集合的代表元
    注释7:u为根的子树访问完毕,设置结点颜色
    注释8:枚举所有和u相关的询问(u, v),如果以v为根的子树已经访问过,那么ancestor[find(v)]肯定已经计算出来,并且必定是u和v的LCA
 
对于注释8的for循环,这个题只查询两个点,没必要用另外一个邻接表了
 
//题意:t组测试用例,输入n,接下来输入n-1条边 组成一棵树,第n组数据代表询问a b之间最近公共祖先
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
const int MAX = ;
vector<int> mp[MAX];
int father[MAX];
int indegree[MAX]; ///入度为0的就是根节点
int _rank[MAX]; ///利用启发式合并防止树成链
int vis[MAX];
int ances[MAX];
int A,B;
void init(int n){
for(int i=;i<=n;i++){
ances[i]=;
vis[i]=;
_rank[i] = ;
indegree[i]=;
father[i] = i;
mp[i].clear();
}
}
int _find(int x){
if(x==father[x]) return x;
return father[x] = _find(father[x]);
}
void _union(int a,int b){
int x = _find(a);
int y = _find(b);
father[x]=y;
}
int Tarjan(int u)
{
for (int i=;i<mp[u].size();i++)
{
Tarjan(mp[u][i]);
_union(u,mp[u][i]);
ances[_find(u)]=u;
}
vis[u]=;
if (A==u && vis[B]) printf("%d\n",ances[_find(B)]);
else if (B==u && vis[A]) printf("%d\n",ances[_find(A)]);
return ;
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--){
int n;
scanf("%d",&n);
init(n);
int a,b;
for(int i=;i<n;i++){
scanf("%d%d",&a,&b);
mp[a].push_back(b);
indegree[b]++;
}
scanf("%d%d",&A,&B);
for(int i=;i<=n;i++){
if(indegree[i]==){
Tarjan(i);
break;
}
}
}
return ;
}

poj 1330(初探LCA)的更多相关文章

  1. POJ 1330 (LCA)

    http://poj.org/problem?id=1330 题意:给出一个图,求两个点的最近公共祖先. sl :水题,贴个模板试试代码.本来是再敲HDU4757的中间发现要用LCA,  操蛋只好用这 ...

  2. POJ 1330(LCA/倍增法模板)

    链接:http://poj.org/problem?id=1330 题意:q次询问求两个点u,v的LCA 思路:LCA模板题,首先找一下树的根,然后dfs预处理求LCA(u,v) AC代码: #inc ...

  3. poj 1330(RMQ&LCA入门题)

    传送门:Problem 1330 https://www.cnblogs.com/violet-acmer/p/9686774.html 参考资料: http://dongxicheng.org/st ...

  4. Nearest Common Ancestors POJ - 1330 (LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 34657   Accept ...

  5. POJ 1330 Tarjan LCA、ST表(其实可以数组模拟)

    题意:给你一棵树,求两个点的最近公共祖先. 思路:因为只有一组询问,直接数组模拟好了. (写得比较乱) 原题请戳这里 #include <cstdio> #include <bits ...

  6. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  7. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  8. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  9. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

随机推荐

  1. Java 匿名内部类 只能访问final变量的原因

    文章来源:http://blog.sina.com.cn/s/blog_4b6f8d150100qni2.html 1)从程序设计语言的理论上:局部内部类(即:定义在方法中的内部类),由于本身就是在方 ...

  2. 2-17作业 数据库和shell综合练习

    1. 使用shell把“12306用户名和密码库-不要使用记事本打开会卡死-解压后可使用word或ultraedit打开.rar”中的所有记录成生sql语句,然后把sql导入数据库,成一个uPwd_1 ...

  3. OS开发中的事件处理(二)-事件传递,响应者链条

    事件处理的事件传递 简介: 发生触摸事件后,系统会将该事件加入到一个由UIApplication管理的事件 队列中,UIApplication会从事件队列中取出最前面的事件,并将事件分发下去以便处理, ...

  4. [转载]系统管理:update-alternatives

    http://blog.csdn.net/dbigbear/article/details/4398961 好吧,其实博主也是转载的. update-alternatives --display | ...

  5. Moodle配置

    Moodle配置 1.   内部设置 在 Moodle 站点管理员界面中有一系列的配置页面(可以从'设置' 块中访问 '网站管理'区).这里有一些重要的系统设置,你需要进行检查. 根据提示信息并结合实 ...

  6. Hibernate入门(4)- Hibernate数据操作

    Hibernate加载数据 Session.get(Class clazz, Serializable id) clazz:需要加载对象的类,例如:User.class id:查询条件(实现了序列化接 ...

  7. resultAPI示例

    什么是Restfull API Restfull API 从字面就可以知道,他是rest式的接口,所以就要先了解什么是rest rest 不是一个技术,也不是一个协议 rest 指的是一组架构约束条件 ...

  8. performSelector支持多参数

    默认的performSelector支持最多传递两个参数,要想传递超过两个的参数,需要使用NSInvocation来模拟performSelector的行为,如下: - (id)performSele ...

  9. Spring cookie 实战(山东数漫江湖)

    Cookie是什么 简单来说,cookie就是浏览器储存在用户电脑上的一小段文本文件.cookie 是纯文本格式,不包含任何可执行的代码.一个web页面或服务器告知浏览器按照一定规范来储存这些信息,并 ...

  10. MSSQL备份脚本

    ) ) ) ),),':',''),' ',''),'-',''),'.','') set @name=N'DEMO'+@temp+'-完整 数据库 备份' set @disk=N'F:\Backup ...