转自:http://blog.chinaunix.net/uid-27037833-id-3237153.html

链表(循环双向链表)是Linux内核中最简单、最常用的一种数据结构。

       
       1、链表的定义
            struct list_head {
                struct list_head *next, *prev;
            }
           这个不含数据域的链表,可以嵌入到任何数据结构中,例如可按如下方式定义含有数据域的链表:
            struct my_list {
                void  * mydata;
                struct list_head  list;
            } ;
 
       2、链表的声明和初始化宏
            struct list_head 只定义了链表结点,并没有专门定义链表头.那么一个链表结点是如何建立起来的?
内核代码 list.h 中定义了两个宏:
            #defind  LIST_HEAD_INIT(name)    { &(name), &(name) }      //仅初始化
            #defind  LIST_HEAD(name)     struct list_head  name = LIST_HEAD_INIT(name)  //声明并初始化
           
            如果要声明并初始化链表头mylist_head,则直接调用:LIST_HEAD(mylist_head),之后,
mylist_head的next、prev指针都初始化为指向自己。这样,就有了一个带头结点的空链表。
 
             判断链表是否为空的函数:
             static inline int list_empty(const struct list_head  * head) {
                  return head->next  ==  head;
              }    //返回1表示链表为空,0表示不空
 
      3、在链表中增加一个结点
          (内核代码中,函数名前加两个下划线表示内部函数)
            static inline void   __list_add(struct list_head *new, struct list_head *prev, struct list_head *next)
            {
                     next -> prev = new ;
                     new -> next = next ;
                     new -> prev = prev ;
                     prev -> next = new ;
            }  
          
            list.h 中增加结点的两个函数为:
           (链表是循环的,可以将任何结点传递给head,调用这个内部函数以分别在链表头和尾增加结点)
            static inline void list_add(struct list_head *new, struct llist_head *head)
            {
                    __list_add(new, head, head -> next) ;
            }
            static inline void list_add_tail(struct list_head 8new, struct list_head *head)
            {
                     __list_add(new, head -> prev, head) ;
            }
            附:给head传递第一个结点,可以用来实现一个队列,传递最后一个结点,可以实现一个栈。
            static 加在函数前,表示这个函数是静态函数,其实际上是对作用域的限制,指该函数作用域仅局限
           于本文件。所以说,static 具有信息隐蔽的作用。而函数前加 inline 关键字的函数,叫内联函数,表
           示编译程序在调用这个函数时,立即将该函数展开。
            
    4、 遍历链表
           list.h 中定义了如下遍历链表的宏:
           #define   list_for_each(pos, head)    for(pos = (head)-> next ;  pos != (head) ;  pos = pos -> next)  
           这种遍历仅仅是找到一个个结点的当前位置,那如何通过pos获得起始结点的地址,从而可以引用结
点的域?list.h 中定义了 list_entry 宏:
           #define   list_entry( ptr, type, member )  \
              ( (type *) ( (char *) (ptr)  - (unsigned long) ( &( (type *)0 )  ->  member ) ) )
          分析:(unsigned long) ( &( (type *)0 )  ->  member ) 把 0 地址转化为 type 结构的指针,然后获取该
          结构中 member 域的指针,也就是获得了 member 在type 结构中的偏移量。其中  (char *) (ptr) 求
         出的是 ptr 的绝对地址,二者相减,于是得到 type 类型结构体的起始地址,即起始结点的地址。
 
   5、链表的应用
         一个用以创建、增加、删除和遍历一个双向链表的Linux内核模块

点击(此处)折叠或打开

  1. #include <linux/kernel.h>
  2. #include <linux/module.h>
  3. #include <linux/slab.h>
  4. #include <linux/list.h>
  5. MODULE_LICENCE("GPL");
  6. MODULE_AUTHOR("LUOTAIJIA");
  7. #define N 10
  8. struct numlist {
  9. int num;
  10. struct list_head list;
  11. };
  12. struct numlist numhead;
  13. static int __init doublelist_init(void)
  14. {
  15. //初始化头结点
  16. struct numlist * listnode; //每次申请链表结点时所用的指针
  17. struct list_head * pos;
  18. struct numlist * p;
  19. int i;
  20. printk("doublelist is starting...\n");
  21. INIT_LIST_HEAD(&numhead.list);
  22. /*
  23. * static inline void INIT_LIST_HEAD(struct list_head *list)
  24. * {
  25. * list->next = list;
  26. * list->prev = list;
  27. * }
  28. */
  29. //建立N个结点,依次加入到链表当中
  30. for (i=0; i<N; i++) {
  31. listnode = (struct numlist *)kmalloc(sizeof(struct numlist), GFP_KERNEL);
  32. //void *kmalloc(size_t size, int flages)
  33. //分配内存,size 要分配内存大小,flags 内存类型
  34. listnode->num = i+1;
  35. list_add_tail(&listnode->list, &numhead.list);
  36. printk("Node %d has added to the doublelist...\n", i+1);
  37. }
  38. //遍历链表
  39. i = 1;
  40. list_for_each(pos, &numhead.list) {
  41. p = list_entry(pos, struct numlist, list);
  42. printk("Node %d's data: %d\n", i, p->num);
  43. i++;
  44. }
  45. return 0;
  46. }
  47. static void __exit doublelist_exit(void)
  48. {
  49. struct list_head *pos, *n;
  50. struct numlist *p;
  51. int i;
  52. //依次删除N个结点
  53. i = 1;
  54. list_for_each_safe(pos, n, &numhead.list) {
  55. //为了安全删除结点而进行的遍历
  56. list_del(pos); //从链表中删除当前结点
  57. p = list_entry(pos, struct numlist, llist);
  58. //得到当前数据结点的首地址,即指针
  59. kfree(p); //释放该数据结点所占空间
  60. printk("Node %d has removed from the doublelist...\n", i++);
  61. }
  62. printk("doublelist is exiting...\n");
  63. }
  64. module_init(doublelist_init);
  65. module_exit(doublelist_exit);
 
参考资料:Linux操作系统原理与应用(第2版)    陈莉君、康华 编著

Linux内核中链表的实现与应用【转】的更多相关文章

  1. linux内核中链表代码分析---list.h头文件分析(一)【转】

    转自:http://blog.chinaunix.net/uid-30254565-id-5637596.html linux内核中链表代码分析---list.h头文件分析(一) 16年2月27日17 ...

  2. linux内核中链表代码分析---list.h头文件分析(二)【转】

    转自:http://blog.chinaunix.net/uid-30254565-id-5637598.html linux内核中链表代码分析---list.h头文件分析(二) 16年2月28日16 ...

  3. Linux内核中链表实现

    关于双链表实现,一般教科书上定义一个双向链表节点的方法如下: struct list_node{ stuct list_node *pre; stuct list_node *next; ElemTy ...

  4. Linux内核中链表的学习

    一.自己学习链表 数组的缺点:(1)数据类型一致:(2)数组的长度事先定好,不能灵活更改. 从而引入了链表来解决数组的这些缺点:(1)结构体解决多数据类型(2)链表的组合使得链表的长度可以灵活设置. ...

  5. Linux内核【链表】整理笔记(1)

    我们都知道Linux内核里的双向链表和学校里教给我们的那种数据结构还是些不一样.Linux采用了一种更通用的设计,将链表以及其相关操作函数从数据本身进行剥离,这样我们在使用链表的时候就不用自己去实现诸 ...

  6. Linux内核中双向链表的经典实现

    概要 前面一章"介绍双向链表并给出了C/C++/Java三种实现",本章继续对双向链表进行探讨,介绍的内容是Linux内核中双向链表的经典实现和用法.其中,也会涉及到Linux内核 ...

  7. Linux内核中的GPIO系统之(3):pin controller driver代码分析

    一.前言 对于一个嵌入式软件工程师,我们的软件模块经常和硬件打交道,pin control subsystem也不例外,被它驱动的硬件叫做pin controller(一般ARM soc的datash ...

  8. Linux内核中流量控制

    linux内核中提供了流量控制的相关处理功能,相关代码在net/sched目录下:而应用层上的控制是通过iproute2软件包中的tc来实现, tc和sched的关系就好象iptables和netfi ...

  9. Linux内核中SPI/I2c子系统剖析

    Linux内核中,SPI和I2C两个子系统的软件架构是一致的,且Linux内核的驱动模型都以bus,driver,device三种抽象对象为基本元素构建起来.下文的分析将主要用这三种抽象对象的创建过程 ...

随机推荐

  1. 【bzoj5064】B-number 数位dp

    题目描述 B数的定义:能被13整除且本身包含字符串"13"的数. 例如:130和2613是B数,但是143和2639不是B数. 你的任务是计算1到n之间有多少个数是B数. 输入 输 ...

  2. Python 配置日志的几种方式

    Python配置日志的几种方式 作为开发者,我们可以通过以下3种方式来配置logging: (1)使用Python代码显式的创建loggers,handlers和formatters并分别调用它们的配 ...

  3. 用select (多路复用)模拟一个 socket server

    需求:用select (多路复用)模拟一个 socket server.可以接收多并发. 1. 一开始是检测自己,如果我有活动了,就说明有客户端要连我了. #用select去模拟socket,实现单线 ...

  4. 【基础】ASP.net MVC 文件下载的几种方法(欢迎讨论)

    在ASP.net MVC 中有几种下载文件的方法 前提:要下载的文件必须是在服务器目录中的,至于不在web项目server目录中的文件下载我不知道,但是还挺想了解的. 第一种:最简单的超链接方法,&l ...

  5. Redux的应该注意的问题

    1. Store中的State修改不能直接修改原有的State,若直接修改State,则redux中的所有操作都将指向 内存中的同一个state,将无法获取每一次操作前后的state,就无法追溯sta ...

  6. selenium - 获取断言信息

    断言:通过脚本提取相应元素的数值,将实际结果与预期结果进行比较.通常获取title,URL,text等信息进行断言. from selenium import webdriver from time ...

  7. AIM Tech Round (Div. 2) B

    B. Making a String time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  8. stout代码分析之八:cache类

    stout中实现了LRU cache.cache的成员如下: public: typedef std::list<Key> list; typedef std::tr1::unordere ...

  9. 裸机配置C语言运行环境

    C语言程序的执行需要栈的支持.部分soc未初始化栈的情况下调用C语言程序会发生错误. start.S中一共配置了看门狗,svc栈,icache. 在x210中看门狗默认关闭,svc栈默认开启,icah ...

  10. [LeetCode] Binary Tree Level Order Traversal 与 Binary Tree Zigzag Level Order Traversal,两种按层次遍历树的方式,分别两个队列,两个栈实现

    Binary Tree Level Order Traversal Given a binary tree, return the level order traversal of its nodes ...