1. sns.Facetgrid 画一个基本的直方图

import numpy as np
import pandas as pd
from scipy import stats, integrate
import matplotlib.pyplot as plt import seaborn as sns
sns.set(color_codes=True)
np.random.seed(sum(map(ord, 'distributions'))) tips = sns.load_dataset('tips')
# 使用sns.Facetgrid 画一个基本的直方图
g = sns.FacetGrid(tips, col='time')
g.map(plt.hist, 'tip')
plt.show()

2 . 添加sns.Facetgrid属性hue,画散点图

g = sns.FacetGrid(tips, col='sex', hue='smoker')
g.map(plt.scatter, 'total_bill', 'tip', alpha=0.7)
g.add_legend()
plt.show()

3. 使用color='0.1'来定义颜色, margin_titles=True把标题分开, fit_reg是否画拟合曲线,sns.regplot画回归图

g = sns.FacetGrid(tips, col='time', row='smoker', margin_titles=False)
g.map(sns.regplot, 'size', 'total_bill', color='0.1', fit_reg=False, x_jitter=0.1)
plt.show()

4. 绘制条形图,同时使用Categorical 生成col对应顺序的条形图, row_order 写入新的顺序的排列

g = sns.FacetGrid(tips, col='day', size=4, aspect=0.5)
g.map(sns.barplot, 'sex', 'total_bill')
plt.show()
# 指定col顺序进行画图
from pandas import Categorical
# 打印当前的day的顺序
ordered_days = tips.day.value_counts().index
# 指定顺序
ordered_sys = Categorical(['Thur', 'Fri', 'Sat', 'Sun'])
g = sns.FacetGrid(tips, col='day', size=4, aspect=0.5, row_order=ordered_days)
g.map(sns.barplot, 'sex', 'total_bill')
plt.show()

5. 绘制多变量指定颜色,通过palette添加颜色

pal = {'Lunch':'seagreen', 'Dinner':'gray'}
# size 指定外面的大小
g = sns.FacetGrid(tips, hue='time', palette=pal, size=5)
# s指定圆的大小, linewidth=0.5边缘线的宽度,egecolor边缘的颜色
g.map(plt.scatter, 'total_bill', 'tip', s=50, alpha=0.7, linewidth=0.5, edgecolor='white')
plt.show()

6. hue_kws={'marker':['^', 'o']}

pal = {'Lunch':'seagreen', 'Dinner':'gray'}
# size 指定外面的大小
g = sns.FacetGrid(tips, hue='time', palette=pal, size=5, hue_kws={'marker':['^', 'o']})
# s指定圆的大小, linewidth=0.5边缘线的宽度,egecolor边缘的颜色
g.map(plt.scatter, 'total_bill', 'tip', s=50, alpha=0.7, linewidth=0.5, edgecolor='white')
plt.show()

7.  设置set_axis_labels 设置坐标, g.fig.subplots_adjust(wspace=0.2, hspace) 表示子图与子图之间的间隔

with sns.axes_style('white'):
g = sns.FacetGrid(tips, row='sex', col='smoker', margin_titles=True, size=2.5) # lw表示球的半径
g.map(plt.scatter, 'total_bill', 'tip', color='#334488', edgecolor='white', lw=0.1)
g.set_axis_labels('Total bill (US Dollars)', 'Tip')
# 设置x轴的范围
g.set(xticks=[10, 30, 50], yticks=[2, 6, 10])
# wspace 和 hspace 设置子图与子图之间的距离
g.fig.subplots_adjust(wspace=0.2, hspace=0.2)
# 调子图的偏移
# g.fig.subplots_adjust(left=)
plt.show()

8. sns.PairGrid(iris)  # 进行两两变量绘图

g = sns.PairGrid(iris)
g.map(plt.scatter)
plt.show()

9. 将主对角线和非对角线的画图方式分开

g = sns.PairGrid(iris)
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
plt.show()

10 多加上一个属性进行画图操作

g = sns.PairGrid(iris, hue='species')
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()
plt.show()

11. 只取其中的两个属性进行画图vars()

g = sns.PairGrid(iris, hue='species', vars=['sepal_length', 'sepal_width'])
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()
plt.show()

12. palette='green_d' 使用渐变色进行画图,取的颜色是整数的

g = sns.PairGrid(iris, hue='species', vars=['sepal_length', 'sepal_width'], palette='GnBu_r')
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()
plt.show()

可视化库-seaborn-Facetgrid(第五天)的更多相关文章

  1. Python统计分析可视化库seaborn(相关性图,变量分布图,箱线图等等)

    Visualization of seaborn  seaborn[1]是一个建立在matplot之上,可用于制作丰富和非常具有吸引力统计图形的Python库.Seaborn库旨在将可视化作为探索和理 ...

  2. 可视化库-seaborn-热力图(第五天)

    1. 画一个基本的热力图, 通过热力图用来观察样本的分布情况 import matplotlib.pyplot as plt import numpy as np np.random.seed(0) ...

  3. 可视化库-seaborn-调色板(第五天)

    1. 基础的调色板的演示  color_palette() 设置传入的任何颜色,不传使用默认颜色,set_palette() 设置所有图的颜色# 6种主题 # 1 deep# 2 muted# 3 p ...

  4. python 可视化库

    在做titanic分析的过程中,看了一些大神的想法,发现在分析数据的过程中,许多大神会使用到seaborn,plotly这些库,而我等小白仅仅知道matplotlib这个唯一的数据可视化库而已.上网查 ...

  5. Pycon 2017: Python可视化库大全

    本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...

  6. Python可视化库

    转自小小蒲公英原文用Python可视化库 现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策.那么数据有什么价值呢?用什么样的手段才能把数 ...

  7. 5-6 可视化库Seaborn-Facetgrid使用和绘制多变量

      基本工作流程是FacetGrid使用数据集和用于构造网格的变量初始化对象.然后,可以通过调用FacetGrid.map()或将一个或多个绘图函数应用于每个子集 FacetGrid.map_data ...

  8. 5-1可视化库Seabon-整体布局风格设置

    In [1]: import seaborn as sns import numpy as np import matplotlib as mpl import matplotlib.pyplot a ...

  9. Vis.js – 基于浏览器的动态 JavaScript 可视化库

    Vis.js 是一个动态的,基于浏览器的可视化库.该库被设计为易于使用,能处理大量的动态数据.该库由以下几部分组成:一是数据集和数据视图,基于灵活的键/值数据集,可以添加,更新和删除项目,订阅数据集变 ...

  10. 动态可视化库Vis.js:社交关系谱

    Form Here:http://code.csdn.net/news/2819345 Vis.js 是一个动态的.基于浏览器的可视化库,可处理大量的动态数据并能与这些数据进行交互操作.该项目是由Al ...

随机推荐

  1. Linux设备树

    一.设备树编译 1.编译设备树:cd linux-x.xx & make dtbs,生成的dtb在目录linux-x.xx/arch/xxx/boot/dts下 2.反编译dtb,生成dts: ...

  2. graphql 数据导入工具

    graphql 是比 比较方便的工具,但是数据导入也是一个比较重要的工具类似prisma 包含一个seed 的功能,类似docker我们使用mysql 数据库的initdb.d,但是那个基本上就 是添 ...

  3. 一个简单的批量更新oracle 数据库中 最近的服务商名称的数据

    有一个需求是这样的,我们需要更新数据库中的数据,数据时这样的 1.大约50万以上 2. 数据中有较多的重复数据 3. 需要将表中最近的代理商的名称赋值给行中的服务商名称 4. 代理商的名称可能有多个, ...

  4. 检索关键字 nyoj

    检索关键字 时间限制: 1000ms 内存限制: 65536KB 64位整型:      Java 类名: 上一题 提交 运行结果 统计 讨论版 下一题 类型: 没有   没有   难度        ...

  5. 【转】每天一个linux命令(9):touch 命令

    原文网址:http://www.cnblogs.com/peida/archive/2012/10/30/2745714.html linux的touch命令不常用,一般在使用make的时候可能会用到 ...

  6. php中__get()和__set的用法

    php版本5.6 一般来说,总是把类的属性定义为private,这更符合现实的逻辑.但是,对属性的读取和赋值操作是非常频繁的,因此在PHP5中,预定义了两个函数“__get()”和“__set()”来 ...

  7. java 物理资源回收 finally与try

    java垃圾回收机制不会回收任何物理资源(磁盘文件.数据库连接.网络连接),垃圾回收机制只能回收堆内存中对象所占用的内存. 方法一使用finally块,在finally块中写入资源回收代码,如下: p ...

  8. Django 实现CRM 问卷调查功能组件

    目录结构: 母版 {% load staticfiles %} <!DOCTYPE html> <html lang="zh-CN"> <head&g ...

  9. [模板] KMP字符串匹配标准代码

    之前借鉴了某个模板的代码.我个人认为这份代码写得很好.值得一背. #include<bits/stdc++.h> using namespace std; const int N=1000 ...

  10. DOM节点的增删改查

    在开始展开DOM操作前,首先需要构建一棵DOM树. <!DOCTYPE html> <html lang="en"> <head> <me ...