1. sns.Facetgrid 画一个基本的直方图

import numpy as np
import pandas as pd
from scipy import stats, integrate
import matplotlib.pyplot as plt import seaborn as sns
sns.set(color_codes=True)
np.random.seed(sum(map(ord, 'distributions'))) tips = sns.load_dataset('tips')
# 使用sns.Facetgrid 画一个基本的直方图
g = sns.FacetGrid(tips, col='time')
g.map(plt.hist, 'tip')
plt.show()

2 . 添加sns.Facetgrid属性hue,画散点图

g = sns.FacetGrid(tips, col='sex', hue='smoker')
g.map(plt.scatter, 'total_bill', 'tip', alpha=0.7)
g.add_legend()
plt.show()

3. 使用color='0.1'来定义颜色, margin_titles=True把标题分开, fit_reg是否画拟合曲线,sns.regplot画回归图

g = sns.FacetGrid(tips, col='time', row='smoker', margin_titles=False)
g.map(sns.regplot, 'size', 'total_bill', color='0.1', fit_reg=False, x_jitter=0.1)
plt.show()

4. 绘制条形图,同时使用Categorical 生成col对应顺序的条形图, row_order 写入新的顺序的排列

g = sns.FacetGrid(tips, col='day', size=4, aspect=0.5)
g.map(sns.barplot, 'sex', 'total_bill')
plt.show()
# 指定col顺序进行画图
from pandas import Categorical
# 打印当前的day的顺序
ordered_days = tips.day.value_counts().index
# 指定顺序
ordered_sys = Categorical(['Thur', 'Fri', 'Sat', 'Sun'])
g = sns.FacetGrid(tips, col='day', size=4, aspect=0.5, row_order=ordered_days)
g.map(sns.barplot, 'sex', 'total_bill')
plt.show()

5. 绘制多变量指定颜色,通过palette添加颜色

pal = {'Lunch':'seagreen', 'Dinner':'gray'}
# size 指定外面的大小
g = sns.FacetGrid(tips, hue='time', palette=pal, size=5)
# s指定圆的大小, linewidth=0.5边缘线的宽度,egecolor边缘的颜色
g.map(plt.scatter, 'total_bill', 'tip', s=50, alpha=0.7, linewidth=0.5, edgecolor='white')
plt.show()

6. hue_kws={'marker':['^', 'o']}

pal = {'Lunch':'seagreen', 'Dinner':'gray'}
# size 指定外面的大小
g = sns.FacetGrid(tips, hue='time', palette=pal, size=5, hue_kws={'marker':['^', 'o']})
# s指定圆的大小, linewidth=0.5边缘线的宽度,egecolor边缘的颜色
g.map(plt.scatter, 'total_bill', 'tip', s=50, alpha=0.7, linewidth=0.5, edgecolor='white')
plt.show()

7.  设置set_axis_labels 设置坐标, g.fig.subplots_adjust(wspace=0.2, hspace) 表示子图与子图之间的间隔

with sns.axes_style('white'):
g = sns.FacetGrid(tips, row='sex', col='smoker', margin_titles=True, size=2.5) # lw表示球的半径
g.map(plt.scatter, 'total_bill', 'tip', color='#334488', edgecolor='white', lw=0.1)
g.set_axis_labels('Total bill (US Dollars)', 'Tip')
# 设置x轴的范围
g.set(xticks=[10, 30, 50], yticks=[2, 6, 10])
# wspace 和 hspace 设置子图与子图之间的距离
g.fig.subplots_adjust(wspace=0.2, hspace=0.2)
# 调子图的偏移
# g.fig.subplots_adjust(left=)
plt.show()

8. sns.PairGrid(iris)  # 进行两两变量绘图

g = sns.PairGrid(iris)
g.map(plt.scatter)
plt.show()

9. 将主对角线和非对角线的画图方式分开

g = sns.PairGrid(iris)
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
plt.show()

10 多加上一个属性进行画图操作

g = sns.PairGrid(iris, hue='species')
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()
plt.show()

11. 只取其中的两个属性进行画图vars()

g = sns.PairGrid(iris, hue='species', vars=['sepal_length', 'sepal_width'])
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()
plt.show()

12. palette='green_d' 使用渐变色进行画图,取的颜色是整数的

g = sns.PairGrid(iris, hue='species', vars=['sepal_length', 'sepal_width'], palette='GnBu_r')
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()
plt.show()

可视化库-seaborn-Facetgrid(第五天)的更多相关文章

  1. Python统计分析可视化库seaborn(相关性图,变量分布图,箱线图等等)

    Visualization of seaborn  seaborn[1]是一个建立在matplot之上,可用于制作丰富和非常具有吸引力统计图形的Python库.Seaborn库旨在将可视化作为探索和理 ...

  2. 可视化库-seaborn-热力图(第五天)

    1. 画一个基本的热力图, 通过热力图用来观察样本的分布情况 import matplotlib.pyplot as plt import numpy as np np.random.seed(0) ...

  3. 可视化库-seaborn-调色板(第五天)

    1. 基础的调色板的演示  color_palette() 设置传入的任何颜色,不传使用默认颜色,set_palette() 设置所有图的颜色# 6种主题 # 1 deep# 2 muted# 3 p ...

  4. python 可视化库

    在做titanic分析的过程中,看了一些大神的想法,发现在分析数据的过程中,许多大神会使用到seaborn,plotly这些库,而我等小白仅仅知道matplotlib这个唯一的数据可视化库而已.上网查 ...

  5. Pycon 2017: Python可视化库大全

    本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...

  6. Python可视化库

    转自小小蒲公英原文用Python可视化库 现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策.那么数据有什么价值呢?用什么样的手段才能把数 ...

  7. 5-6 可视化库Seaborn-Facetgrid使用和绘制多变量

      基本工作流程是FacetGrid使用数据集和用于构造网格的变量初始化对象.然后,可以通过调用FacetGrid.map()或将一个或多个绘图函数应用于每个子集 FacetGrid.map_data ...

  8. 5-1可视化库Seabon-整体布局风格设置

    In [1]: import seaborn as sns import numpy as np import matplotlib as mpl import matplotlib.pyplot a ...

  9. Vis.js – 基于浏览器的动态 JavaScript 可视化库

    Vis.js 是一个动态的,基于浏览器的可视化库.该库被设计为易于使用,能处理大量的动态数据.该库由以下几部分组成:一是数据集和数据视图,基于灵活的键/值数据集,可以添加,更新和删除项目,订阅数据集变 ...

  10. 动态可视化库Vis.js:社交关系谱

    Form Here:http://code.csdn.net/news/2819345 Vis.js 是一个动态的.基于浏览器的可视化库,可处理大量的动态数据并能与这些数据进行交互操作.该项目是由Al ...

随机推荐

  1. QT内使用OpenCV

    在QT内使用Opencv,调试了好久总是出问题. 開始在pro文件内进行了opencv的配置,然后就是不能识别#include包括文件,后来不知道什么原因.奇妙地 能够识别包括了. 但是,新的问题出现 ...

  2. RAC5——11gR2以后GI进程的变化

    参考文档: 11gR2 Clusterware and Grid Home - What You Need to Know (Doc ID 1053147.1)诊断 Grid Infrastructu ...

  3. 嵌入式QT应用的窗口大小、位置,QtreeStack的样式

    1.    窗口固定大小 :this->setFixedSize(452,244); 2.窗口固定位置(经试验,触摸屏的鼠标事件不能有效使用) oldPos.setX((800-452)/2); ...

  4. JQuery获得内容 - text()、html() 以及 val()

    获得text()和html() <!DOCTYPE html><html><head><script src="/jquery/jquery-1.1 ...

  5. java 中的好东西 jackson

    转自: https://github.com/FasterXML/jackson 重要的是: jackson 支持 第三方数据类型 jsonobject jsonarray( json.org/jav ...

  6. 关于String str =new String("abc")和 String str = "abc"的比较--转

    原文地址:https://www.cnblogs.com/OnlyCT/p/5433410.html String是一个非常常用的类,应该深入的去了解String 如: String str =new ...

  7. canvas基础一

    使用HTML5中<canvas>元素可以在页面中设定一个区域,然后通过JavaScript动态地在这个区域中绘制图形,要在这块画布(canvas)上绘图,需要取得绘图上下文,而取得绘图上下 ...

  8. binlog之四:mysql中binlog_format模式与配置详解,binlog的日志格式详解

    mysql复制主要有三种方式:基于SQL语句的复制(statement-based replication, SBR),基于行的复制(row-based replication, RBR),混合模式复 ...

  9. 合并单元格/VBA

    ' 合并某一列中相同数据的单元格 Sub MergeColumns() Dim rowN As Integer Dim i, j, m, n As Integer Dim col As Integer ...

  10. VMware新建虚拟机

    VMware作为一个非常便捷的虚拟机软件,学会简单的使用方法,对试验非常有帮助. 1. 打开VM,选择“创建新的虚拟机” 2. 选择典型: 3. 选择稍后选择安装源: 4. 选择Linux,并选择Li ...