Josephina and RPG

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 511    Accepted Submission(s): 139
Special Judge

Problem Description
A role-playing game (RPG and sometimes roleplaying game) is a game in which players assume the roles of characters in a fictional setting. Players take responsibility for acting out these roles within a narrative, either through literal acting or through a process of structured decision-making or character development.
Recently, Josephina is busy playing a RPG named TX3. In this game, M characters are available to by selected by players. In the whole game, Josephina is most interested in the "Challenge Game" part.
The Challenge Game is a team play game. A challenger team is made up of three players, and the three characters used by players in the team are required to be different. At the beginning of the Challenge Game, the players can choose any characters combination as the start team. Then, they will fight with N AI teams one after another. There is a special rule in the Challenge Game: once the challenger team beat an AI team, they have a chance to change the current characters combination with the AI team. Anyway, the challenger team can insist on using the current team and ignore the exchange opportunity. Note that the players can only change the characters combination to the latest defeated AI team. The challenger team gets victory only if they beat all the AI teams.
Josephina is good at statistics, and she writes a table to record the winning rate between all different character combinations. She wants to know the maximum winning probability if she always chooses best strategy in the game. Can you help her?
 
Input
There are multiple test cases. The first line of each test case is an integer M (3 ≤ M ≤ 10), which indicates the number of characters. The following is a matrix T whose size is R × R. R equals to C(M, 3). T(i, j) indicates the winning rate of team i when it is faced with team j. We guarantee that T(i, j) + T(j, i) = 1.0. All winning rates will retain two decimal places. An integer N (1 ≤ N ≤ 10000) is given next, which indicates the number of AI teams. The following line contains N integers which are the IDs (0-based) of the AI teams. The IDs can be duplicated.
 
Output
For each test case, please output the maximum winning probability if Josephina uses the best strategy in the game. For each answer, an absolute error not more than 1e-6 is acceptable.
 
Sample Input
4
0.50 0.50 0.20 0.30
0.50 0.50 0.90 0.40
0.80 0.10 0.50 0.60
0.70 0.60 0.40 0.50
3
0 1 2
 
Sample Output
0.378000

坑点: 有可能超过c(m,3),忽略可A

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
#define INF 10000005000
using namespace std; const int maxm=10500;
const int maxn=150; typedef long long LL; int c[20][20],a[maxm];
double dp[2][maxn];
double cc[maxn][maxn]; void init()
{
memset(c,0,sizeof(c));
c[0][0]=c[1][0]=c[1][1]=1;
for(int i=2;i<=15;i++){
c[i][0]=c[i][i]=1;
for(int j=1;j<i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1]);
}
} int main()
{
int N,n,M,cur;
double res;
init();
while(scanf("%d",&N)!=EOF){
n=c[N][3];
for(int i=0;i<n;i++) for(int j=0;j<n;j++) scanf("%lf",&cc[i][j]);
memset(dp,0,sizeof(dp));
scanf("%d",&M);
for(int i=0;i<M;i++) {scanf("%d",&a[i]);if(a[i]>n)a[i]=0;}//ATTENTION!
for(int i=0;i<n;i++) dp[0][i]=cc[i][a[0]];
cur=1;
for(int i=1;i<M;i++){
for(int j=0;j<n;j++) dp[cur][j]=0;
for(int j=0;j<n;j++){
dp[cur][j]=max(dp[cur][j],dp[cur^1][j]*cc[j][a[i]]);
dp[cur][a[i-1]]=max(dp[cur][a[i-1]],dp[cur^1][j]*cc[a[i-1]][a[i]]);
}
cur^=1;
}
res=0;
for(int i=0;i<n;i++) res=max(res,dp[cur^1][i]);
printf("%.6f\n",res);
}
}

hdu4800 Josephina and RPG 解题报告的更多相关文章

  1. CH Round #56 - 国庆节欢乐赛解题报告

    最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...

  2. 二模13day1解题报告

    二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...

  3. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  4. 习题:codevs 2822 爱在心中 解题报告

    这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...

  5. 习题:codevs 1035 火车停留解题报告

    本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...

  6. 习题: codevs 2492 上帝造题的七分钟2 解题报告

    这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...

  7. 习题:codevs 1519 过路费 解题报告

    今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...

  8. NOIP2016提高组解题报告

    NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合

  9. LeetCode 解题报告索引

    最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中......                        ...

随机推荐

  1. UVa 1451 Average - 斜率优化

    A DNA sequence consists of four letters, A, C, G, and T. The GC-ratio of a DNA sequence is the numbe ...

  2. JAVA I/O(四)网络Socket和ServerSocket

    <Thinking in Enterprise Java>中第一章描述了用Socket和Channel的网络编程,核心即为Socket和Channel,本文简单讲述Socket的应用. S ...

  3. HTML标签(持续更新)

    HTML的文档结构: 1.<html> 2.<head>:放置HTML文件的信息,如定义CSS样式代码可放置在此标签中 3.<title>:放置网页的标题 4.&l ...

  4. [Linux] - Linux安装JDK

    https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html  <官方JDK下载 之后 ...

  5. mysql中时间计算函数SQL DATE_SUB()用法

    本文为博主原创,未经允许不得转载: 在写sql的时候,经常要在sql中传值时间,对时间进行计算并过滤.之前都是将时间在后台计算好,直接传值给sql, 今天发现,有一个更方便的sql函数,可以简化很多代 ...

  6. Varnish 一般是放在 Nginx 前面还是后面的?

    1.varnish官网有写. 如果用ssl前面肯定得有nginx. 如果没有ssl看你实际需求.可以varnish,然后nginx,然后app. 看怎么设计了. 2.Varnish 通常是在两种情况下 ...

  7. python 集合并集

    #Union setx = set(["green", "blue"]) sety = set(["blue", "yellow& ...

  8. API接口自动化之3 同一个war包中多个接口做自动化测试

    同一个war包中多个接口做自动化测试 一个接口用一个测试类,每个测试用例如下,比如下面是4个测试用例,每个详细的测试用例中含有请求入参,返回体校验,以此来判断每条测试用例是否通过 一个war包中,若含 ...

  9. BeautifulSoup中的find,find_all

    1.一般来说,为了找到BeautifulSoup对象内任何第一个标签入口,使用find()方法. 以上代码是一个生态金字塔的简单展示,为了找到第一生产者,第一消费者或第二消费者,可以使用Beautif ...

  10. 在线客服 分享 qq 一键加好友 一键入群

    1.在线客服 <a href="tencent://message/?uin=qqnum&Site=&menu=yes">qq客服</a>  ...