[BZOJ4244]邮戳拉力赛
Description
Input
Output
Sample Input
1 1 1 1
1 9 9 1
9 9 1 1
1 9 9 1
Sample Output
HINT
而且因为除了一条直线之外的全是环,所以如果存在$x$种第一种取法,就必定有$x$种第二种取法与之对应
而对于第三种和第四种取法,由于不会改变行走的方向,所以不用单独处理
这就可以对应到括号序列上来,第二种取法是左括号,第一种取法是右括号,这样对应的原因是你可以用二在后一在前来消除影响,但如果一在前就无法消除影响了,具体原因就是线路方向
然后还有需要注意的是,如果我们要用第三种取法,就要保证他之前有第二种取法的影响还未被消掉(你得保证此时的可以到达下行线)
所以我们设$f_{ij}$表示到$i$还剩$j$个左括号的时候最小代价是多少
按照上面四种情况转移即可
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,T;
int f[][];
int main() {
memset(f,,sizeof(f)),f[][]=;
scanf("%d%d",&n,&T);
for(int i=;i<=n;i++) {
int u,v,d,e;scanf("%d%d%d%d",&u,&v,&d,&e);
for(int j=;j<=n;j++) f[i-][j]+=j*T*;
//下->中->上
for(int j=;j<=n;j++) f[i][j]=min(f[i][j],f[i-][j-]+d+v);
//上->中->下
for(int j=;j<n;j++) f[i][j]=min(f[i][j],f[i-][j+]+u+e);
//上->中->上
for(int j=;j<=n;j++) f[i][j]=min(f[i][j],f[i-][j]+u+v);
//下->中->下
for(int j=;j<=n;j++) f[i][j]=min(f[i][j],f[i-][j]+d+e);
//消除上->中->下的影响
for(int j=;j<=n;j++) f[i][j]=min(f[i][j],f[i][j-]+d+v);
//消除下->中->上的影响
for(int j=n-;j;j--) f[i][j]=min(f[i][j],f[i][j+]+u+e);
}
printf("%d\n",f[n][]+(n+)*T);
return ;
}
[BZOJ4244]邮戳拉力赛的更多相关文章
- 【BZOJ4244】邮戳拉力赛 DP
[BZOJ4244]邮戳拉力赛 Description IOI铁路是由N+2个站点构成的直线线路.这条线路的车站从某一端的车站开始顺次标号为0...N+1. 这条路线上行驶的电车分为上行电车和下行电车 ...
- 【bzoj4244】邮戳拉力赛 背包dp
题目描述 IOI铁路是由N+2个站点构成的直线线路.这条线路的车站从某一端的车站开始顺次标号为0...N+1. 这条路线上行驶的电车分为上行电车和下行电车两种,上行电车沿编号增大方向行驶,下行电车沿编 ...
- bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...
- JOISC 2014 邮戳拉力赛(基础DP)
题意 https://loj.ac/problem/2878 思路 真的神仙题,想到就很好写,想不到就写不出来. 肯定只能一个一个邮戳按顺序分析.首先,将取一枚邮戳的路径分为四种: 上行 \(\rig ...
- [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]
题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...
- BZOJ 4244: 邮戳拉力赛
转化为括号序列DP 注意边界 #include<cstdio> #include<algorithm> #define rep(i,x,y) for (int i=x; i&l ...
- BZOJ 4244 邮戳拉力赛 (DP)
手动博客搬家: 本文发表于20181211 18:01:21, 原地址https://blog.csdn.net/suncongbo/article/details/84957907 为了防止我的博客 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- BZOJ 4236~4247 题解
BZOJ 4236 JOIOJI f[i][0..2]表示前i个字符中′J′/′O′/′I′的个数 将二元组<f[i][0]−f[i][1],f[i][1]−f[i][2]>扔进map,记 ...
随机推荐
- Word文档中的格式标记大全
在Word中有很多的格式设置,很多格式设置都会有一些标记,这些标记是隐藏的,在打印文档时是不会打印出来的,但是它们却起着结构化文档的大作用.如果你在编辑文档,不妨点击格式标记开关,看看都有哪些格式标记 ...
- 几种常见web攻击手段及其防御方式
XSS(跨站脚本攻击) CSRF(跨站请求伪造) SQL注入 DDOS web安全系列目录 总结几种常见web攻击手段极其防御方式 总结几种常见的安全算法 XSS 概念 全称是跨站脚本攻击(Cross ...
- ubuntu 安装ftp nginx tomcat,mysql
tomcat sudo apt-get install tomcat 访问方式,http://loclahost:8080 进入sbin目录下 sudo ./startup.sh开启 sudo ./s ...
- SDUTOJ2465:其实玩游戏也得学程序(bfs+优先队列+回溯)
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2465 题目描述 由于前两次的打击,ZYJ同学不 ...
- iOS下拉刷新和上拉刷新
在iOS开发中,我们经常要用到下拉刷新和上拉刷新来加载新的数据,当前这也适合分页.iOS原生就带有该方法,下面就iOS自带的下拉刷新方法来简单操作. 上拉刷新 1.在TableView里,一打开软件, ...
- iOS 自定义日志输出
在做iOS开发过程中,我们经常需要输出日志来查看某些数据是否打印出来,或者查看查个类是否被调用了. 系统默认的是NSLog(@"xxxx %d",1) ,但如果该APP要发布到商店 ...
- mysql主从延迟(摘自http://www.linuxidc.com/Linux/2012-02/53995.htm)
http://www.linuxidc.com/Linux/2012-02/53995.htm
- entity framework 新增,更新,事务
protected void Button1_Click(object sender, EventArgs e) { yyEntities _db; _db = new yyEntities(); t ...
- 网络编程—代码—UDP数据报传输
UDP:数据报传输 1.接收端 public class Udps { //接收端 public static void main(String[] args) throws IOException ...
- mac远程连接windows
第一步:在Mac上安装Remote Desktop Connection 进入Microsoft Remote Desktop Connection下载安装包. 下载完成之后,双击安装包进行安装. 第 ...