Description

给定一颗树,树中每个结点有一个邮递员,每个邮递员要沿着唯一的路径走向capital(1号结点),每到一个城市他可以有两种选择: 1.继续走到下个城市 2.让这个城市的邮递员替他出发。 每个邮递员出发需要一个准备时间W[I],他们的速度是V[I],表示走一公里需要多少分钟。 现在要你求出每个城市的邮递员到capital的最少时间(不一定是他自己到capital,可以是别人帮他) N<=100000 3 ≤ N ≤ 100 000 0 ≤ Si≤ 10^9 1 ≤ Vi≤ 10^9 The length of each road will not exceed 10 000 For 20% of the tests, N ≤ 2 500 For 50% of the tests, each town will have at most 2 adjacent roads (i.e., the graph of roads will be a line)

Input

N 以下N-1行A,B,C三个数表示A,B之间有一条长为C的边。 再N行每行两数Wi,Vi 输出有一行N-1个数表示如题所述。

f[w]=W[w]+V[w]*dep[w]+min(f[u]-dep[u]*V[w]) u在w到根的路径上

树上的斜率优化,两维分别是深度dep和答案f,dfs并用单调栈记录当前点到根路径上的凸包,三分得到决策点

为保证时间复杂度,单调栈pop时要用二分确定弹出的元素个数,并支持撤销

#include<cstdio>
typedef long double ld;
typedef long long i64;
const int N=;
int n,es[N*],enx[N*],ev[N*],e0[N],ep=;
int c[N],v[N],ss[N],sp=;
i64 f[N],dep[N];
int _(){
int x;
scanf("%d",&x);
return x;
}
bool chk(int a,int b,int w){
return (f[b]-f[a])/ld(dep[b]-dep[a])>(f[w]-f[b])/ld(dep[w]-dep[b]);
}
void f1(int w,int pa){
if(sp){
int L=,R=sp,M;
while(L<R){
M=(L+R)>>;
int a=ss[M],b=ss[M+];
if(f[a]-f[b]<v[w]*(dep[a]-dep[b]))R=M;
else L=M+;
}
f[w]=c[w]+v[w]*(dep[w]-dep[ss[L]])+f[ss[L]];
}
int L=,R=sp,M;
if(L<R&&!chk(ss[R-],ss[R],w))L=R;
while(L<R){
M=(L+R)>>;
if(chk(ss[M],ss[M+],w))R=M;
else L=M+;
}
L=sp;
M=ss[sp=R+];
ss[sp]=w;
for(int i=e0[w];i;i=enx[i]){
int u=es[i];
if(u==pa)continue;
dep[u]=dep[w]+ev[i];
f1(u,w);
}
ss[sp]=M;
sp=L;
}
int main(){
n=_();
for(int i=,a,b,c;i<n;++i){
a=_();b=_();c=_();
es[ep]=b;enx[ep]=e0[a];ev[ep]=c;e0[a]=ep++;
es[ep]=a;enx[ep]=e0[b];ev[ep]=c;e0[b]=ep++;
}
for(int i=;i<=n;++i){
c[i]=_();
v[i]=_();
}
f1(,);
for(int i=;i<=n;++i)printf("%lld%c",f[i],i==n?:);
return ;
}

bzoj 1767: [Ceoi2009]harbingers的更多相关文章

  1. BZOJ 1767] [Ceoi2009] harbingers (斜率优化)

    [BZOJ 1767] [Ceoi2009] harbingers (斜率优化) 题面 给定一颗树,树中每个结点有一个邮递员,每个邮递员要沿着唯一的路径走向capital(1号结点),每到一个城市他可 ...

  2. ●BZOJ 1767 [Ceoi2009]harbingers

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1767 题解: 斜率优化DP,单调栈,二分 定义 DP[i] 表示从 i 节点出发,到达根所花 ...

  3. bzoj1767[Ceoi2009]harbingers 斜率优化dp

    1767: [Ceoi2009]harbingers Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 421  Solved: 112[Submit][S ...

  4. [Bzoj1767][Ceoi2009]harbingers (树上斜率优化)

    1767: [Ceoi2009]harbingers Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 451  Solved: 120[Submit][S ...

  5. BZOJ1767/Gym207383I CEOI2009 Harbingers 斜率优化、可持久化单调栈、二分

    传送门--BZOJCH 传送门--VJ 注:本题在BZOJ上是权限题,在Gym里面也不能直接看,所以只能在VJ上交了-- 不难考虑到这是一个\(dp\). 设\(dep_x\)表示\(x\)在树上的带 ...

  6. BZOJ1767 : [Ceoi2009]harbingers

    设d[i]表示i到1的距离 f[i]=w[i]+min(f[j]+(d[i]-d[j])*v[i])=w[i]+d[i]*v[i]+min(-d[j]*v[i]+f[j]) 对这棵树进行点分治,每次递 ...

  7. ●BZOJ 3672 [Noi2014]购票

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3672 题解: 斜率优化DP,点分治(树上CDQ分治...) 这里有一个没有距离限制的简单版: ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

随机推荐

  1. vsftpd配置虚拟用户为登录用户02

    1.安装vsftpd 安装依赖包: yum -y install pam pam-devel db4 de4-devel db4-uitls db4-tcl 新建vsftpd系统用户: #建立Vsft ...

  2. SSRS配置

    1. Reporting Services Configuration Manager-->Execution Account. 2. C:\Program Files\Microsoft SQ ...

  3. Vue.js 源码学习笔记 - 细节

     1. this._eventsCount = { }    这是为了避免不必要的深度遍历: 在有广播事件到来时,如果当前 vm 的 _eventsCount 为 0, 则不必向其子 vm 继续传播该 ...

  4. kbmMW 5.06.20试用笔记

    1.kbmMWConfiguration自动备份配置文件的问题还没有修正. 下面是以前写过的内容,再一次在新闻组中提出这个问题: kbmMW提供一个强大的配置信息管理对象,前期译过这个对象的介绍,在使 ...

  5. SWIFT中获取当前经伟度

    很多的APP中都会用到用户的当前位置信息,本文将实现这个小功能 import UIKit import CoreLocation //添加引用 class ViewController: UIView ...

  6. sql,用 ISNULL(), NVL(), IFNULL() and COALESCE() 函数替换空值

    在数据库操作中,往往要对一些查询出来的空值进行替换,如函数SUM(),这个函数如果没有值会返回NULL,这是我们不希望看到的, 在MySQL中我们可以这样来写: ) ... 在SQLSERVER中我们 ...

  7. git的使用基础

    /*游戏或者运动才能让我短暂的忘记心痛,现如今感觉学习比游戏和运动还重要——曾少锋*/ 在Git-Bash中配置自己的名字和Email: git config --global user.name & ...

  8. 20155216 2016-2017-2 《Java程序设计》第五周学习总结

    20155216 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 使用try,catch,finally处理异常 JVM会尝试执行try区块中的程序代码,如果 ...

  9. centos yum出现no module named yum

    运行yum出现如下错误 There was a problem importing one of the Python modules required to run yum. The error l ...

  10. Loj 2008 小凸想跑步

    Loj 2008 小凸想跑步 \(S(P,p_0,p_1)<S(P,p_i,p_{i+1})\) 这个约束条件对于 \(P_x,P_y\) 是线性的,即将面积用向量叉积表示,暴力拆开,可得到 \ ...