logistic:二分类

softmax:多分类

logistic回归

在 logistic 回归中,我们的训练集由  个已标记的样本构成:。由于 logistic 回归是针对二分类问题的,因此类标记 

假设函数(hypothesis function): 

代价函数(损失函数):

我们的目标是训练模型参数,使其能够最小化代价函数。

假设函数就相当于我们在线性回归中要拟合的直线函数。

softmax回归

在 softmax回归中,我们的训练集由  个已标记的样本构成:。由于softmax回归是针对多分类问题(相对于 logistic 回归针对二分类问题),因此类标记  可以取  个不同的值(而不是 2 个)。我们有 

对于给定的测试输入 ,我们想用假设函数针对每一个类别j估算出概率值 。也就是说,我们想估计  的每一种分类结果出现的概率。因此,我们的假设函数将要输出一个  维的向量(向量元素的和为1)来表示这  个估计的概率值。 具体地说,我们的假设函数  形式如下:

假设函数:
其中  是模型的参数。请注意 这一项对概率分布进行归一化,使得所有概率之和为 1 。

为了方便起见,我们同样使用符号  来表示全部的模型参数。在实现Softmax回归时,将  用一个  的矩阵来表示会很方便,该矩阵是将  按行罗列起来得到的,如下所示:

也就是说表示的是x属于不同类别的概率组成的向量。

代价函数:
 是示性函数,其取值规则为

 值为真的表达式 

值得注意的是,logistic回归代价函数是softmax代价函数的特殊情况。因此,logistic回归代价函数可以改为:

一点个人理解:

为什么二分类中参数只有一个,而k分类中参数却有k个。

其实二分类中的是y=1情况下的参数,而y=0情况下其实未给出参数,因为y=0的假设函数值可以通过1-(y=1的假设函数值)得到。同理,k分类中参数其实只需要k-1个参数就可以了,多余的一个参数是冗余的。
具体冗余参数有什么负面影响,参考Softmax回归 http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/vincent2610/article/details/52708863?locationNum=14
 
知乎:https://www.zhihu.com/question/23765351

logistic回归和softmax回归的更多相关文章

  1. 线性回归、Logistic回归、Softmax回归

    线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)…(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的 ...

  2. 1.线性回归、Logistic回归、Softmax回归

    本次回归章节的思维导图版总结已经总结完毕,但自我感觉不甚理想.不知道是模型太简单还是由于自己本身的原因,总结出来的东西感觉很少,好像知识点都覆盖上了,但乍一看,好像又什么都没有.不管怎样,算是一次尝试 ...

  3. Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...

  4. 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

    本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...

  5. 机器学习(三)—线性回归、逻辑回归、Softmax回归 的区别

    1.什么是回归?  是一种监督学习方式,用于预测输入变量和输出变量之间的关系,等价于函数拟合,选择一条函数曲线使其更好的拟合已知数据且更好的预测未知数据. 2.线性回归  于一个一般的线性模型而言,其 ...

  6. DNN:逻辑回归与 SoftMax 回归方法

    UFLDL Tutorial 翻译系列:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 第四章:SoftMax回归 简介: ...

  7. 广义线性模型------逻辑回归和softmax回归

    1.广义线性模型 2.逻辑回归 3.softmax回归

  8. DeepLearning之路(二)SoftMax回归

    Softmax回归   1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试 ...

  9. softmax回归---sigmoid(1)

    介绍softmax之前先讲讲sigmoid: 逻辑回归模型常用的函数:sigmoid函数(用来做二分类) 表达式:f(x)=L/(1+exp-k(x-x0)) 其图像: 本质:将一个真值映射到(0,1 ...

随机推荐

  1. 用栈来递归 模板 honoi

    用栈来模拟递归的技巧 #define _CRT_SECURE_NO_WARNINGS #include<iostream> #include<vector> #include& ...

  2. Oracle备份恢复之热备份恢复及异机恢复

    原理: 数据库必须运行在归档模式下,否则备份没有意义.备份前冻结块头,使scn号不变化,然后cp物理文件,最后解冻块头.此过程dml语句可以正常执行,动作被写在日志文件里面,当解冻scn号后,日志文件 ...

  3. are not called implicitly

    php.net <?php class BaseClass{ function __construct() { print "In BaseClass constructor<b ...

  4. 洛谷P3953 逛公园 [noip2017] 图论+dp

    正解:图论(最短路)+dp(记忆化搜索) 解题报告: 这题真的是个好东西! 做了这题我才发现我的dij一直是错的...但是我以前用dij做的题居然都A了?什么玄学事件啊...我哭了TT 不过其实感觉还 ...

  5. Python 标准输出 sys.stdout 重定向

    本文环境:Python 2.7 使用 print obj 而非 print(obj) 一些背景 sys.stdout 与 print 当我们在 Python 中打印对象调用 print obj 时候, ...

  6. nodejs(一)process模块

    1.process是一个全局进程,你可以直接通过process变量直接访问它. process实现了EventEmitter接口,exit方法会在当进程退出的时候执行.因为进程退出之后将不再执行事件循 ...

  7. 【Fiddler】杂乱基础学习

    1.过滤fiddler筛选 打开fiddler>Tools>Fiddler Options>HTTPS>...from remote clients only,勾选这个选项就可 ...

  8. mysql 操作sql语句 操作数据表

    #2. 操作文件 先切换到文件夹下:use db1 查看当前所在的数据库 mysql> select database(); +------------+ | database() | +--- ...

  9. how to add borders for a google map marker 谷歌地图 自己定义图钉

    If you are not satisfied with default Google map Marker (Default google marker can only be a icon, i ...

  10. js-jquery-Validate校验【一】

    一.导入 js 库 <script src="http://static.runoob.com/assets/jquery-validation-1.14.0/lib/jquery.j ...