树(Heap)
对于大量的输入数据,链表的线性访问时间太慢,不宜使用——《数据结构与算法分析——C 语言描述》 p 65
对于大量的输入数据,适合用树结构,大部分操作都是 O( log N )。
二叉树
1. 实现
节点定义
template<typename T>
struct Node
{
Node(T v) : val(v), left(nullptr), right(nullptr) {}; T val;
struct Node *left;
struct Node *right;
};
构建树并添加节点
按照如图的树构建
Node<int> *root = new Node<int>(); //根节点 root->left = new Node<int>(); //根节点的左子树
root->left->right = new Node<int>(); root->right = new Node<int>(); //根节点的又子树
root->right->left = new Node<int>();
root->right->left->left = new Node<int>();
root->right->right = new Node<int>();
遍历
递归方式
template<typename T>
void traversalRecursion(const struct Node<T>* const p)
{
if (p != nullptr)
{
cout << p->val; traversalRecursion(p->left);
traversalRecursion(p->right);
}
else
cout << "#";
}
非递归方式——用栈消除递归
template<typename T>
void traversalStack(struct Node<T> *const root)
{
stack<struct Node<T>*> s; s.push(root); while (s.size())
{
struct Node<T> *const p = s.top(); s.pop(); if (p == nullptr)
{
cout << "#";
continue;
} cout << p->val; s.push(p->right);
s.push(p->left);
}
}
表达式树
后缀表达式: a b + c d e + * *
从“后缀表达式”开始构造一颗表达式树,仅类定义
template<typename T>
class ExpressionTree
{
public:
struct Node<T>* initFormPostfix(const string &postfix)
{
istringstream iss(postfix);
T c; while (iss >> c)
{
struct Node<T> *const p = new struct Node<T>(c); switch (characterType(c))
{
case :
sk.push(p);
break; case :
p->right = sk.top(); sk.pop();
p->left = sk.top(); sk.pop(); sk.push(p);
break;
}
} return sk.top();
} private:
int characterType(const T &c) const
{
if (c == "+" || c == "-" || c == "*" || c == "/")
return ; return ;
} stack<struct Node<T>*> sk;
};
完整代码
#include <iostream>
#include <string>
#include <sstream>
#include <stack>
#include <memory> using namespace std; template<typename T>
struct Node
{
Node(T v) : val(v), left(nullptr), right(nullptr) {};
T val;
struct Node *left;
struct Node *right;
}; template<typename T>
class ExpressionTree
{
public:
struct Node<T>* initFormPostfix(const string &postfix)
{
istringstream iss(postfix);
T c; while (iss >> c)
{
struct Node<T> *const p = new struct Node<T>(c); switch (characterType(c))
{
case :
sk.push(p);
break; case :
p->right = sk.top(); sk.pop();
p->left = sk.top(); sk.pop(); sk.push(p);
break;
}
} return sk.top();
} private:
int characterType(const T &c) const
{
if (c == "+" || c == "-" || c == "*" || c == "/")
return ; return ;
} stack<struct Node<T>*> sk;
}; template<typename T>
void traversalRecursion(const struct Node<T>* const p)
{
if (p != nullptr)
{
cout << p->val; traversalRecursion(p->left);
traversalRecursion(p->right);
}
else
cout << "#";
} int main()
{
string postfix = "a b + c d e + * *"; ExpressionTree<string> et; const struct Node<string> *root = et.initFormPostfix(postfix); traversalRecursion(root); return ;
}
二叉查找树
构建
构建如图所示的二叉查找树
构建 + 遍历 代码如下
#include <iostream>
#include <initializer_list>
#include <stack> using namespace std; template<typename T>
struct Node
{
Node(T v) : val(v), left(nullptr), right(nullptr) {}
T val;
struct Node* left;
struct Node* right;
}; template<typename T>
class BinarySearchTree
{
public:
BinarySearchTree()
{
root = new struct Node<T>();
} BinarySearchTree(const initializer_list<T> il) : BinarySearchTree()
{
initializer_list<T>::iterator it = il.begin(); root->val = *it++; while (it != il.end())
insert(*it++);
} void insert(const T &val)
{
struct Node<T> **p = &root; while (*p != nullptr)
{
if (val == (*p)->val)
return; if (val < (*p)->val)
{
p = &((*p)->left);
continue;
} if (val > (*p)->val)
{
p = &((*p)->right);
continue;
}
} *p = new struct Node<T>(val);
} void traversalStack()
{
stack<struct Node<T>*> s; s.push(root); while (s.size())
{
struct Node<T> *const p = s.top(); s.pop(); if (p == nullptr)
{
cout << "#";
continue;
} cout << p->val; s.push(p->right);
s.push(p->left);
}
} private:
struct Node<T> *root;
}; int main(void)
{
BinarySearchTree<int> bst({ , , , , , , , , }); bst.traversalStack(); return ;
}
查找 代码如下
struct Node<T>* find(const T &val) const
{
struct Node<T> *p = root; while (p != nullptr)
{
if (p->val == val)
return p; if (val < p->val)
p = p->left; if (val > p->val)
p = p->right;
} return nullptr;
}
树的遍历
后序遍历
利用后序遍历求树的深度
unsigned getBinaryTreeHeigt(const struct Node *const p)
{
if (p == nullptr)
return -;
else
return + max(getBinaryTreeHeigt(p->left), getBinaryTreeHeigt(p->right));
}
层序遍历
代码一,非递归实现
void levelOrderTraversal(struct Node *root)
{
queue<struct Node*> q; q.push(root); while (q.size())
{
struct Node *p = q.front(); q.pop(); if (p == nullptr)
continue; q.push(p->left);
q.push(p->right); cout << p->val << " ";
}
}
代码二,递归实现
void levelVisit(queue<struct Node*> &que) {
if (que.empty()) return; struct Node *p = que.front(); que.pop(); if (p == nullptr) return; cout << p->val << " "; que.push(p->left);
que.push(p->right); levelVisit(que);
}
利用队列可以完成二叉树的层序遍历(广度优先遍历);利用栈可以完成二叉树的深度优先遍历。
树(Heap)的更多相关文章
- BZOJ.3489.A simple rmq problem(主席树 Heap)
题目链接 当时没用markdown写,可能看起来比较难受...可以复制到别的地方看比如DevC++. \(Description\) 给定一个长为n的序列,多次询问[l,r]中最大的只出现一次的数.强 ...
- 清北学堂 2020 国庆J2考前综合强化 Day2
目录 1. 题目 T1 一 题目描述 Sol T2 二 题目描述 Sol T3 三 题目描述 Sol T4 四 题目描述 Sol 2. 算法 -- 数据结构 1. 题目 T1 一 题目描述 问题描述 ...
- 左偏树(Leftist Heap/Tree)简介及代码
左偏树是一种常用的优先队列(堆)结构.与二叉堆相比,左偏树可以高效的实现两个堆的合并操作. 左偏树实现方便,编程复杂度低,而且有着不俗的效率表现. 它的一个常见应用就是与并查集结合使用.利用并查集确定 ...
- Codeforces Round #300 F - A Heap of Heaps (树状数组 OR 差分)
F. A Heap of Heaps time limit per test 3 seconds memory limit per test 512 megabytes input standard ...
- zoj-3963 Heap Partition(贪心+二分+树状数组)
题目链接: Heap Partition Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge A sequence ...
- 笛卡尔树 POJ ——1785 Binary Search Heap Construction
相应POJ 题目:点击打开链接 Binary Search Heap Construction Time Limit: 2000MS Memory Limit: 30000K Total Subm ...
- POJ-1785-Binary Search Heap Construction(笛卡尔树)
Description Read the statement of problem G for the definitions concerning trees. In the following w ...
- L - A Heap of Heaps CodeForces - 538F 主席树
L - A Heap of Heaps CodeForces - 538F 这个是一个还比较裸的静态主席树. 这个题目的意思是把这个数组变成k叉树,然后问构成的树的子树小于等于它的父节点的对数有多少. ...
- POJ 1785 Binary Search Heap Construction(裸笛卡尔树的构造)
笛卡尔树: 每个节点有2个关键字key.value.从key的角度看,这是一颗二叉搜索树,每个节点的左子树的key都比它小,右子树都比它大:从value的角度看,这是一个堆. 题意:以字符串为关键字k ...
随机推荐
- poj3261 Milk Patterns【后缀数组】【二分】
Farmer John has noticed that the quality of milk given by his cows varies from day to day. On furthe ...
- PyQT5初学(一)
PyQt5 是Digia的一套Qt5与python绑定的应用框架,同时支持2.x和3.x.本教程使用的是3.x.Qt库由Riverbank Computing开发,是最强大的GUI库之一 ,官方网站: ...
- Django模板变量的使用
在views.py中进行逻辑控制,编写向跳转页面传递内容的代码.可以看出,对类.字典.列表中的数据均可操作.views.py的内容如下: from django.shortcuts import re ...
- 查看mobileprovision信息
security cms -D -i ***********.mobileprovision
- 初识Spring Webflux
Important to know is that there are two ways to use Spring Webflux. One using annotations, which is ...
- (3.10)mysql基础深入——mysqld 服务器与客户端连接过程 源码分析【待写】
(3.10)mysql基础深入——mysqld 服务器与客户端连接过程 源码分析[待写]
- C#基础笔记(第十天)
C#基础笔记(第十天) 1.字段.属性.方法.构造函数字段:存储数据属性:保护字段,对字段的取值和设值进行限定方法:描述对象的行为构造函数:初始化对象(给对象的每个属性依次的赋值)类中成员,如果不加访 ...
- git merge和git rebase
转载于http://blog.csdn.net/wh_19910525/article/details/7554489 git merge是用来合并两个分支的. git merge b # 将b分支合 ...
- FM/FFM原理
转自https://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入FFM原理与实践 del2z, ...
- numpy.random.rand()/randn()/randint()/normal()/choice()/RandomState()
这玩意用了很多次,但每次用还是容易混淆,今天来总结mark一下~~~ 1. numpy.random.rand(d0,d1,...,dn) 生成一个[0,1)之间的随机数或N维数组 np.random ...