Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 25108   Accepted: 13077

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount
0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power
transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of
Con. 




An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y.
The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets
(u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set
ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can
occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second
data set encodes the network from figure 1.

题目给出非常多都是废话,特别是符号s(u),d(u),Con还有那条公式都别管。混淆视听

难点在于构图

电站p(u)均为源点。用户c(u)均为汇点,中转站当普通点处理

结点和边都有 x/y(流量和容量),这个非常easy使人产生矛盾(由于学习最大流问题是。仅仅有 边 才有流量和容量。可是不难发现。题目所给的例图中有多个源点,多个汇点,多个普通点。仅仅有源点和汇点才标有 x/y,普通点没有标x/y,并且所给出的全部边都有x/y。 这无疑在促使我们对图做一个变形: 建议一个超级源 s,一个超级汇 t。使 s 指向全部源点,并把源点的 容量y 分别作为这些边的 容量,使全部汇点指向 t。并把汇点的容量y分别作为这些边的 容量,然后本来是源点和汇点的点,全部变为普通点。这样就把“多源多汇最大流”变形为“单源单汇最大流”问题。

学习最大流问题时。会发现边上的流量值是给定初始值的,可是这题的输入仅仅有容量。没有流量,非常多人立即感觉到无从入手。事实上边上的流量初始值为多少都没有所谓,解最大流须要用到的仅仅有容量。

可是一般为了方便起见, 会把全部边的流量初始化为0。

这样做有一个最大的优点,就是能够回避 反向弧 的存在。

以上解析来自http://www.cnblogs.com/lyy289065406/archive/2011/07/30/2122116.html

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#define maxn 300
#define maxm 100000
#define INF 0x3f3f3f3f
using namespace std; int head[maxn], cur[maxn], cnt;
int dist[maxn], vis[maxn];
int n, np, nc, m; struct node{
int u, v, cap, flow, next;
}; node edge[maxm]; void init(){
cnt = 0;
memset(head, -1, sizeof(head));
} void add(int u, int v, int w){
edge[cnt] = {u, v, w, 0, head[u]};
head[u] = cnt++;
edge[cnt] = {v, u, 0, 0, head[v]};
head[v] = cnt++;
} void getmap(){
int u, v, w;
while(m--){
scanf(" (%d,%d)%d", &u, &v, &w);//注意有空格
add(u, v, w);
}
while(np--){
scanf(" (%d)%d", &u, &w);
add(n, u, w);// n 为源点, 源点和电站连接
}
while(nc--){
scanf(" (%d)%d", &u, &w);
add(u, n + 1, w); // n + 1 为汇点 ,消费者和汇点连接
}
} bool BFS(int st ,int ed){
queue<int>q;
memset(vis, 0 ,sizeof(vis));
memset(dist, -1, sizeof(dist));
vis[st] = 1;
dist[st] = 0;
q.push(st);
while(!q.empty()){
int u = q.front();
q.pop();
for(int i = head[u]; i != -1; i = edge[i].next){
node E = edge[i];
if(!vis[E.v] && E.cap > E.flow){
vis[E.v] = 1;
dist[E.v] = dist[u] + 1;
if(E.v == ed)
return true;
q.push(E.v);
}
}
}
return false;
} int DFS(int x, int ed, int a){
if(x == ed || a == 0)
return a;
int flow = 0, f;
for(int &i = cur[x]; i != -1; i = edge[i].next){
node &E = edge[i];
if(dist[E.v] == dist[x] + 1 && (f = DFS(E.v, ed, min(a, E.cap - E.flow))) > 0){
E.flow += f;
edge[i ^ 1].flow -= f;
a -= f;
flow += f;
if(a == 0)
break;
}
}
return flow;
} int maxflow(int st, int ed){
int flowsum = 0;
while(BFS(st,ed)){
memcpy(cur, head, sizeof(head));
flowsum += DFS(st, ed, INF);
}
return flowsum;
} int main (){
while(scanf("%d%d%d%d", &n, &np, &nc, &m) != EOF){
init();
getmap();
printf("%d\n", maxflow(n, n + 1));
}
return 0;
}

POJ 1459 &amp;&amp; ZOJ 1734--Power Network【最大流dinic】的更多相关文章

  1. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  2. poj1087 A Plug for UNIX & poj1459 Power Network (最大流)

    读题比做题难系列…… poj1087 输入n,代表插座个数,接下来分别输入n个插座,字母表示.把插座看做最大流源点,连接到一个点做最大源点,流量为1. 输入m,代表电器个数,接下来分别输入m个电器,字 ...

  3. POJ1459 Power Network —— 最大流

    题目链接:https://vjudge.net/problem/POJ-1459 Power Network Time Limit: 2000MS   Memory Limit: 32768K Tot ...

  4. POJ-1459-Pwoer Network(最大流Dinic, 神仙输入)

    链接: https://vjudge.net/problem/POJ-1459 题意: A power network consists of nodes (power stations, consu ...

  5. POJ 1459 Power Network 最大流(Edmonds_Karp算法)

    题目链接: http://poj.org/problem?id=1459 因为发电站有多个,所以需要一个超级源点,消费者有多个,需要一个超级汇点,这样超级源点到发电站的权值就是发电站的容量,也就是题目 ...

  6. Power Network(最大流(EK算法))

    http://poj.org/problem?id=1459 题意:有一个电路网络,每个节点可以产生.传递.消耗若干电量,有点线连接结点,每个电线有最大传输量,求这个网络的最大消费量. 思路:从源点到 ...

  7. poj1459 Power Network --- 最大流 EK/dinic

    求从电站->调度站->消费者的最大流,给出一些边上的容量.和电站和消费者能够输入和输出的最大量. 加入一个超级源点和汇点,建边跑模板就能够了. 两个模板逗能够. #include < ...

  8. poj 1459 Power Network

    题目连接 http://poj.org/problem?id=1459 Power Network Description A power network consists of nodes (pow ...

  9. poj 1459 Power Network : 最大网络流 dinic算法实现

    点击打开链接 Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 20903   Accepted:  ...

随机推荐

  1. 手动释放linux内存cache

    总有很多朋友对于Linux的内存管理有疑问,之前一篇linux下的内存管理方式似乎也没能清除大家的疑虑.而在新版核心中,似乎对这个问题提供了新的解决方法,特转出来给大家参考一下.最后,还附上我对这方法 ...

  2. openvpn之EasyRSA配置篇

    cd EasyRSA-2.2.2 vi vars #红色加粗的表示是我们需要修改的,其它的保持默认就可以 export EASY_RSA="`pwd`" export OPENSS ...

  3. spring 加载jar包中的配置文件

    package com.xxx.ssptsppt.dataexchange.utils; import com.xxx.maybee.engine.utils.FileUtil; import com ...

  4. SpringBoot2 添加应用拦截器

    项目参考:详细参见:<Spring Boot 2精髓:从构建小系统到架构分布式大系统> 第三章 3.6.1节 拦截器 MyWebMvcConfigurer package com.arch ...

  5. git 无法提交空目录

    git不能提交子文件夹?   空目录无法add,在最里面的目录下加上随便加上一个txt就可以了

  6. 微信小程序——navigator无法跳转

    今天在做小程序的时候,发现用navigator无法进行跳转.url 路径也是对的. 后面发现是因为我需要跳转的页面定义在了tabBar里面的.如下图: 如果需要跳转到tabBar里面定义的这些页面,需 ...

  7. C++ 面向对象 类成员函数this指针

    每个类成员函数都只涉及一个对象, 即调用它的对象. 但有时候方法可能涉及到两个对象, 在这种情况下需要使用C++ 的 this 指针 假设将方法命名为topval(), 则函数调用stock1.top ...

  8. VIM下的可视模式的相关知识

    三种可视模式: v 激活面向字符的可视模式: V 激活面向行的可视模式: ctrl+v 激活面向列块的可视模式: 选择高亮区: 上面的 v 是可以与跳转指令 以及表示范围的指令组合使用的. 如:vl, ...

  9. JUnit断言

    在本节中,我们将介绍一些断言方法.所有这些方法都受到 Assert 类扩展了java.lang.Object类并为它们提供编写测试,以便检测故障.下表中有一种最常用的断言方法的更详细的解释. 断言 描 ...

  10. EF5+MVC4系列(10) mvc的布局页面 _ViewStart.Cshtml

    当客户端请求 /Product/Index的时候, 如果在视图的根目录下有 _ViewStart.Cshtml 就会先执行这个,再去执行 Product文件夹下的Index视图, 如果Product文 ...