https://blog.csdn.net/guolindonggld/article/details/79044574

Bi-LSTM

使用TensorFlow构建Bi-LSTM时经常是下面的代码:

cell_fw = tf.contrib.rnn.LSTMCell(num_units=100)
cell_bw = tf.contrib.rnn.LSTMCell(num_units=100) (outputs, output_states) = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, inputs,
sequence_length=300)
  • 1
  • 2
  • 3
  • 4
  • 5

首先下面是我画的Bi-LSTM示意图:

其实LSTM使用起来很简单,就是输入一排的向量,然后输出一排的向量。构建时只要设定两个超参数:num_units和sequence_length。

LSTMCell

tf.contrib.rnn.LSTMCell(
num_units,
use_peepholes=False,
cell_clip=None,
initializer=None,
num_proj=None,
proj_clip=None,
num_unit_shards=None,
num_proj_shards=None,
forget_bias=1.0,
state_is_tuple=True,
activation=None,
reuse=None
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

上面的LSTM Cell只有一个超参数需要设定,num_units,即输出向量的维度。

bidirectional_dynamic_rnn()

(outputs, output_states) = tf.nn.bidirectional_dynamic_rnn(
cell_fw,
cell_bw,
inputs,
sequence_length=None,
initial_state_fw=None,
initial_state_bw=None,
dtype=None,
parallel_iterations=None,
swap_memory=False,
time_major=False,
scope=None
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

这个函数唯一需要设定的超参数就是序列长度sequence_length。

输入: 
inputs的shape通常是[batch_size, sequence_length, dim_embedding]。

输出: 
outputs是一个(output_fw, output_bw)元组,output_fw和output_bw的shape都是[batch_size, sequence_length, num_units]

output_states是一个(output_state_fw, output_state_bw) 元组,分别是前向和后向最后一个Cell的Output,output_state_fw和output_state_bw的类型都是LSTMStateTuple,这个类有两个属性c和h,分别表示Memory Cell和Hidden State,如下图:

CRF

对于序列标注问题,通常会在LSTM的输出后接一个CRF层:将LSTM的输出通过线性变换得到维度为[batch_size, max_seq_len, num_tags]的张量,这个张量再作为一元势函数(Unary Potentials)输入到CRF层。

# 将两个LSTM的输出合并
output_fw, output_bw = outputs
output = tf.concat([output_fw, output_bw], axis=-1) # 变换矩阵,可训练参数
W = tf.get_variable("W", [2 * num_units, num_tags]) # 线性变换
matricized_output = tf.reshape(output, [-1, 2 * num_units])
matricized_unary_scores = tf.matmul(matricized_output , W)
unary_scores = tf.reshape(matricized_unary_scores, [batch_size, max_seq_len, num_tags])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

损失函数

# Loss函数
log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(unary_scores, tags, sequence_lengths)
loss = tf.reduce_mean(-log_likelihood)
  • 1
  • 2
  • 3

其中 
tags:维度为[batch_size, max_seq_len]的矩阵,也就是Golden标签,注意这里的标签都是以索引方式表示的。 
sequence_lengths:维度为[batch_size]的向量,记录了每个序列的长度。

log_likelihood:维度为[batch_size]的向量,每个元素代表每个给定序列的Log-Likelihood。 
transition_params :维度为[num_tags, num_tags]的转移矩阵。注意这里的转移矩阵不像传统的HMM概率转移矩阵那样要求每个元素非负且每一行的和为1,这里的每个元素取值范围是实数(正负都可以)。

解码

decode_tags, best_score = tf.contrib.crf.crf_decode(unary_scores, transition_params, sequence_lengths)
  • 1

其中 
decode_tags:维度为[batch_size, max_seq_len]的矩阵,包含最高分的标签序列。 
best_score :维度为[batch_size]的向量,包含最高分数。

TensorFlow教程——Bi-LSTM+CRF进行序列标注(代码浅析)的更多相关文章

  1. LSTM+CRF进行序列标注

    为什么使用LSTM+CRF进行序列标注 直接使用LSTM进行序列标注时只考虑了输入序列的信息,即单词信息,没有考虑输出信息,即标签信息,这样无法对标签信息进行建模,所以在LSTM的基础上引入一个标签转 ...

  2. ALBERT+BiLSTM+CRF实现序列标注

    一.模型框架图 二.分层介绍 1)ALBERT层 albert是以单个汉字作为输入的(本次配置最大为128个,短句做padding),两边分别加上开始标识CLS和结束标识SEP,输出的是每个输入wor ...

  3. TensorFlow (RNN)深度学习 双向LSTM(BiLSTM)+CRF 实现 sequence labeling 序列标注问题 源码下载

    http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CR ...

  4. 用CRF++开源工具做文本序列标注教程

    本文只介绍如何快速的使用CRF++做序列标注,对其中的原理和训练测试参数不做介绍. 官网地址:CRF++: Yet Another CRF toolkit 主要完成如下功能: 输入 -> &qu ...

  5. CNN做序列标注问题(tensorflow)

    一.搭建简单的CNN做序列标注代码 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt TIME_ST ...

  6. 基于CRF序列标注的中文依存句法分析器的Java实现

    这是一个基于CRF的中文依存句法分析器,内部CRF模型的特征函数采用 双数组Trie树(DoubleArrayTrie)储存,解码采用特化的维特比后向算法.相较于<最大熵依存句法分析器的实现&g ...

  7. BI-LSTM-CRF在序列标注中的应用

    1. 前言 在NLP中有几个经典的序列标注问题,词性标注(POS),chunking和命名实体识别(NER).序列标注器的输出可用于另外的应用程序.例如,可以利用在用户搜索查询上训练的命名实体识别器来 ...

  8. 转:TensorFlow入门(六) 双端 LSTM 实现序列标注(分词)

    http://blog.csdn.net/Jerr__y/article/details/70471066 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @cr ...

  9. Bi-LSTM+CRF在文本序列标注中的应用

    传统 CRF 中的输入 X 向量一般是 word 的 one-hot 形式,前面提到这种形式的输入损失了很多词语的语义信息.有了词嵌入方法之后,词向量形式的词表征一般效果比 one-hot 表示的特征 ...

随机推荐

  1. CentOS7忘记mysql的root密码_处理方法.

    1.打开mysql的配置文件: vi /etc/my.cnf 2.在配置文件中添加:skip-grant-tables,然后保存退出, vi常用命令在最后.   如图 3.重启mysql servic ...

  2. spring-boot 速成(3) actuator

    actuator 通过暴露一系列的endpoints可以让开发者快速了解spring boot的各项运行指标,比如:线程数,jvm剩余内存等一系列参数. 启用方法很简单,参考下面: dependenc ...

  3. 两个div如何并列 (转)

    两个div如何并列?当用到div+css代替table时,我习惯用两个方法: 1 <div id="parent"> <div id="child_1& ...

  4. Go内置库模块 flag

    import "flag" flag包实现了命令行参数的解析.每个参数认为一条记录,根据实际进行定义,到一个set集合.每条都有各自的状态参数. 在使用flag时正常流程: 1.  ...

  5. HDU 4568 SPFA + TSP

    这道题是长沙邀请赛的题,当时是道签到题. 这种题还是很常见的,讲一下思路. 首先是预处理出每个宝藏之间的距离,还有到边的距离,直接对每个宝藏进行一次SPFA就可以了. 然后就是经典的求TSP的过程. ...

  6. AIX 与Linux 中crontab 介绍

    AIX 与Linux 中crontab 用法相似,先介绍Linux 中的Crontab 用法,再后介绍AIX 与Linux 的不同之处.   一.Crontab 介绍 crontab命令的功能是在一定 ...

  7. Delphi如何在Form的标题栏绘制自定义文字

    Delphi中Form窗体的标题被设计成绘制在系统菜单的旁边,如果你想要在标题栏绘制自定义文本又不想改变Caption属性,你需要处理特定的Windows消息:WM_NCPAINT.. WM_NCPA ...

  8. react-router 从 v2/v3 to v4 迁移(翻译)

    react-router v4 是完全重写的,所以没有简单的迁移方式,这份指南将为您提供一些步骤,以帮助您了解如何升级应用程序. 注意: 这份迁移指南适用于react-router v2和v3,但为简 ...

  9. 自己动手写Vue插件Toast

    <style> .vue-toast { width: 100%; height: 100%; position: fixed; top: 0px; left: 0px; backgrou ...

  10. delphi 实现文件上传下载

    unit UpDownFile; interface uses Windows, Classes, Idhttp, URLMon, IdMultipartFormData; const UpUrl = ...