poj 2942 点的双连通分量
思路:
对于该图,直接用建图貌似没法解,所以也很容易想到建补图,这样存在边的两个点就能再圆桌上做一起。也就将问题转化为对双连通分量中是否存在奇圈了。
我们将每次查询的边保存在stack中,当遇到关键点的时候,stack里面保存的就是一个连通分量。在该连通分量中进行深搜,每次标记一个与父节点相反的颜色。当某次子节点与父节点颜色相同,那么就存在奇圈,且该连通分量中所有的点都在奇圈中。将这些点标记,最后进行遍历就行了。
引用discuss里的话:
一个块若无法做二分图染色,势必存在一个长度为奇数的环
任找一个奇环C,则对于任意一个非环上的点A,一定有两条不相交的路,连向这个奇环,交奇环于两个不同的点P、Q(否则这就不是一个双连通分量)
那么在环C上有两条P-->Q的路径,一条经过奇数条边,一条经过偶数条边
其中一条同PA、AQ相连后,一定是个奇环,所以A一定也在一个奇环上
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define Maxn 1010
#define Maxm Maxn*Maxn
using namespace std;
int index[Maxn],vi[Maxn],dfn[Maxn],col[Maxn],low[Maxn],map[Maxn][Maxn],e,n,lab=,stack[Maxm],top,odd[Maxn];
void init()
{
memset(index,-,sizeof(index));
memset(vi,,sizeof(vi));
memset(map,,sizeof(map));
memset(col,,sizeof(col));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(odd,,sizeof(odd));
e=lab=top=;
}
struct Edge{
int from,to,next,v;
}edge[Maxm];
void addedge(int from, int to)
{
edge[e].v=;
edge[e].from=from;
edge[e].to=to;
edge[e].next=index[from];
index[from]=e++;
edge[e].v=;
edge[e].to=from;
edge[e].from=to;
edge[e].next=index[to];
index[to]=e++;
}
int find(int u)
{
int i,j,temp;
for(i=index[u];i!=-;i=edge[i].next)
{
temp=edge[i].to;
if(vi[temp])
{
if(col[temp]==-)
{
col[temp]=!col[u];
if(find(temp))//寻找奇圈
return ;
}
else
if(col[temp]==col[u]) return ;
}
}
return ;
}
int color(int u)
{
memset(col,-,sizeof(col));
memset(vi,,sizeof(vi));
col[u]=;
int i;
do{//将该连通分量进行标记
i=stack[--top];
vi[edge[i].from]=;
vi[edge[i].to]=;
}
while(edge[i].from!=u);
if(find(u))//如果找到就进行标记
{
for(i=;i<=n;i++)
{
if(vi[i])
odd[i]=;
}
}
return ;
}
int dfs(int u)
{
dfn[u]=low[u]=++lab;
int i,j,temp;
for(i=index[u];i!=-;i=edge[i].next)
{
temp=edge[i].to;
if(edge[i].v) continue;//一开始没加这个判断,一直WA
edge[i].v=edge[i^].v=;
stack[top++]=i;
if(!dfn[temp])
{
dfs(temp);
if(low[temp]>=dfn[u]) color(u);
low[u]=min(low[u],low[temp]);
}
low[u]=min(low[u],dfn[temp]);
}
return ;
}
int main()
{
int m,i,j,a,b;
while(scanf("%d%d",&n,&m),n||m)
{
init();
for(i=;i<=m;i++)
{
scanf("%d%d",&a,&b);
map[a][b]=map[b][a]=;
}
for(i=;i<=n;i++)
{
for(j=i+;j<=n;j++)
{
if(map[i][j])
addedge(i,j);
}
}
for(i=;i<=n;i++)
if(!dfn[i])
dfs(i);
int ans=;
for(i=;i<=n;i++)
if(!odd[i])
ans++;
printf("%d\n",ans);
}
return ;
}
poj 2942 点的双连通分量的更多相关文章
- POJ 3352 无向图边双连通分量,缩点,无重边
为什么写这道题还是因为昨天多校的第二题,是道图论,HDU 4612. 当时拿到题目的时候就知道是道模版题,但是苦于图论太弱.模版都太水,居然找不到. 虽然比赛的时候最后水过了,但是那个模版看的还是一知 ...
- Redundant Paths POJ - 3177(边—双连通分量)
题意: 在图中加边 看最少能通过加多少条边把 图变成边—双连通分量 解析: 先做一次dfs,不同的连通分量的low是不同的 注意重边 缩点 统计度为1的点 那么需要加的边为(ret+1)/2 #i ...
- poj 2942 求点双联通+二分图判断奇偶环+交叉染色法判断二分图
http://blog.csdn.net/lyy289065406/article/details/6756821 http://www.cnblogs.com/wuyiqi/archive/2011 ...
- poj 3694 Network(双连通分量)
题目:http://poj.org/problem?id=3694 #include <iostream> #include <cstring> #include <cs ...
- poj 1144 Network【双连通分量求割点总数】
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11042 Accepted: 5100 Descript ...
- poj 2942 Knights of the Round Table(点双连通分量+二分图判定)
题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...
- 【POJ】2942 Knights of the Round Table(双连通分量)
http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...
- POJ 2942 Knights of the Round Table 黑白着色+点双连通分量
题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...
- 【POJ 2942】Knights of the Round Table(点双连通分量,二分图染色)
圆桌会议必须满足:奇数个人参与,相邻的不能是敌人(敌人关系是无向边). 求无论如何都不能参加会议的骑士个数.只需求哪些骑士是可以参加的. 我们求原图的补图:只要不是敌人的两个人就连边. 在补图的一个奇 ...
随机推荐
- 四轴飞行diy全套入门教程(从最基础的开始)
转载:http://www.cnmox.com/thread-12460-1-1.html首先声明本人也是菜鸟,此教程就是从一个菜鸟的角度来讲解,现在论坛上的帖子都突然冒很多名词出来,又不成体系,我自 ...
- AutoCAD.NET二次开发:创建自定义菜单(COM)
当我们要在CAD中创建自定菜单时,可以引用COM组件来实现. 下面是实现方式: 1.新建类库项目,并引用CAD目录(我这里用的是CAD2008)下的acdbmgd.dll.acmgd.dll,并将引用 ...
- HDU 3911 Black And White (线段树区间合并 + lazy标记)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3911 给你n个数0和1,m个操作: 0操作 输出l到r之间最长的连续1的个数 1操作 将l到r之间 ...
- 被mysql中的wait_timeout坑了
今天被mysql里的wait_timeout坑了 网上能搜到很多关于mysql中的wait_timeout相关的文章,但是大多数只是说明了他的作用,而且都说这个参数要配合那个inter ...
- MVC生命周期
MVC之前的那点事儿系列 转自:http://www.cnblogs.com/TomXu/p/3756794.html http://www.cnblogs.com/Joans/archive/201 ...
- Enterprise Library 4 数据访问应用程序块
Enterprise Library 数据访问应用程序块简化了实现常规数据访问功能的开发任务.应用程序可以在各种场景中使用此应用程序块,例如为显示而读取数据.传递数据穿过应用程序层( applicat ...
- jquery formValidate demo 采用struts 异步方式检验用户名是否存在
1 login.jsp <%@taglib uri="/struts-tags" prefix="s"%><!DOCTYPE html PUB ...
- JSP/ Servlet常见的中文乱码原因
在开发中,我们经常遇到中文乱码的问题,比方: &浏览器中看到的 Jsp/Servlet 页面中的汉字成了 '?' ? &浏览器中看到的 Servlet 页面中的汉字都成了乱码 &a ...
- bat 简单命令实现编译cocos2d-x android项目
新建一个compile_cmd.bat文件,存放需要执行的命令: cocos compile -p android -j 4 然后,如果直接运行这个文件,在编译完之后命令行窗口会自动退出,这样我们无法 ...
- android 访问SMS短信收件箱
访问 SMS收件箱是另一个常见的需求.首先,需要将读取 SMS 的权限 <uses-permission android:name="android.permission.READ ...