Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing $j$ vectors from $\scrM$ and $k-j$ vectors from $\scrN$ and forming the linear span of the antisymmetric tensor products of all such vectors, we get different subspaces of $\wedge^k\scrH$; for example, one of those is $\vee^k\scrM$. Determine all the subspaces thus obtained and their dimensionalities. Do the same for $\vee^k\scrH$.

Solution. (1). Let $e_1,\cdots,e_p$ be the orthonormal basis of $\scrM$, and $e_{p+1},\cdots,e_k$ be the orthonormal basis of $\scrN$. Then for $0\leq j\leq k$, the subspace we consider has a basis $$\bex e_{i_1}\wedge \cdots \wedge e_{i_j}\wedge e_{i_{j+1}}\wedge\cdots \wedge e_{i_k}, \eex$$ where $$\bex 1\leq i_1<\cdots<i_j\leq p<p+1\leq i_{j+1}<\cdots<i_k\leq n. \eex$$ Thus its dimension is $$\bex \sex{p\atop j}\cdot \sex{n-p\atop k-j}. \eex$$ (2). Now we consider the subspace of $\vee^k\scrH$. In this case, it has a basis $$\bex e_{i_1}\vee \cdots \vee e_{i_j}\vee e_{i_{j+1}}\vee \cdots \vee e_{i_k}, \eex$$ where $$\bex 1\leq i_1\leq\cdots\leq i_j\leq p<p+1\leq i_{j+1}\leq\cdots\leq i_k\leq n. \eex$$ Thus its dimension is $$\bex \sex{p+j-1\atop j}\cdot \sex{n-p+k-j+1\atop k-j}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 统一iOS客户端和服务器端认证

    最近公司的同事业余时间搞了一个内部的类about.me(https://about.me/)的网站Ocelots,想来是一个很洋气的注意,以后跟客户介绍公司的时候,直接登录该网站,谈到谁的时候,就打开 ...

  2. NBTSTAT命令详解

    1. 具体功能    该命令用于显示本地计算机和远程计算机的基于 TCP/IP(NetBT) 协议的 NetBIOS 统计资料. NetBIOS 名称表和 NetBIOS 名称缓存. NBTSTAT  ...

  3. tableView的基本使用(改良版)

    @interface ViewController ()<UITableViewDataSource, UITableViewDelegate> { int i;//用来计算接受通知的次数 ...

  4. NSFileHandle 和 NSFileManager的一些用法

    文件操作 NSFileManager 常见的NSFileManager文件的方法: -(BOOL)contentsAtPath:path 从文件中读取数据 -(BOOL)createFileAtPat ...

  5. 读书笔记 (二) ———Fundamentals of Multiagent Systems with NetLogo Examples by Prof. Jose M Vidal

    chapter 2 分布式约束1 分布式约束满足 1.1 过滤算法 1.2 基于归结的调和算法 consistency 1.3 异步回溯 1.4 异步弱承诺? 1.5 分布式突破?2 分布式受限优化 ...

  6. 1194: [HNOI2006]潘多拉的盒子 - BZOJ

    Description  Input 第一行是一个正整数S,表示宝盒上咒语机的个数,(1≤S≤50).文件以下分为S块,每一块描述一个咒语机,按照咒语机0,咒语机1„„咒语机S-1的顺序描述.每一块的 ...

  7. 为什么样本方差(sample variance)的分母是 n-1?

    为什么样本方差(sample variance)的分母是 n-1? (補充一句哦,題主問的方差 estimator 通常用 moments 方法估計.如果用的是 ML 方法,請不要多想不是你們想的那樣 ...

  8. Exploring the 7 Different Types of Data Stories

    Exploring the 7 Different Types of Data Stories What makes a story truly data-driven? For one, the n ...

  9. ASP + ACCESS保存图片文件之实现

    con.execute "CREATE tblImg (lngId COUNTER PRIMARY KEY, binImg IMAGE)" set ads=createobject ...

  10. linux telnet命令参数及用法详解--telnet连接远程终端命令

    功能说明:远端登入. 语 法:telnet [-8acdEfFKLrx][-b<主机alias.html' target='_blank'>别名>][-e<脱离字符>][ ...