Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing $j$ vectors from $\scrM$ and $k-j$ vectors from $\scrN$ and forming the linear span of the antisymmetric tensor products of all such vectors, we get different subspaces of $\wedge^k\scrH$; for example, one of those is $\vee^k\scrM$. Determine all the subspaces thus obtained and their dimensionalities. Do the same for $\vee^k\scrH$.

Solution. (1). Let $e_1,\cdots,e_p$ be the orthonormal basis of $\scrM$, and $e_{p+1},\cdots,e_k$ be the orthonormal basis of $\scrN$. Then for $0\leq j\leq k$, the subspace we consider has a basis $$\bex e_{i_1}\wedge \cdots \wedge e_{i_j}\wedge e_{i_{j+1}}\wedge\cdots \wedge e_{i_k}, \eex$$ where $$\bex 1\leq i_1<\cdots<i_j\leq p<p+1\leq i_{j+1}<\cdots<i_k\leq n. \eex$$ Thus its dimension is $$\bex \sex{p\atop j}\cdot \sex{n-p\atop k-j}. \eex$$ (2). Now we consider the subspace of $\vee^k\scrH$. In this case, it has a basis $$\bex e_{i_1}\vee \cdots \vee e_{i_j}\vee e_{i_{j+1}}\vee \cdots \vee e_{i_k}, \eex$$ where $$\bex 1\leq i_1\leq\cdots\leq i_j\leq p<p+1\leq i_{j+1}\leq\cdots\leq i_k\leq n. \eex$$ Thus its dimension is $$\bex \sex{p+j-1\atop j}\cdot \sex{n-p+k-j+1\atop k-j}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. iOS的view翻转动画实现--代码老,供参考

    新建一个view-based模板工程,在ViewController文件中添加下面的代码,即可实现翻转效果: - (void)viewDidLoad { [super viewDidLoad]; // ...

  2. 域名的a记录转过来他的公网ip

    首先 客户要我把域名 和项目进行绑定客户需要提供万网或者新网的账户,登进去域名管理  选项域名管理的A记录定向到那个公网ip上 与服务器做绑定然后 在服务器的iis 上 加个主机头 输入主机头名称 也 ...

  3. 手写归并排序(MergeSort)

    #include<iostream> #include<stdio.h> #include<algorithm> #define N 10000 using nam ...

  4. 斯坦福数据挖掘Introduction

    感谢敖山.薛霄老师把我引进了统计学和现代服务业的大门.......至少是长见识了. 查相似项检索时发现的. 中间一部分资料来自厦门大学数据库实验室,感谢大牛们的传道授业,爱你们. 查资料时发现很多计算 ...

  5. [转载]js javascript 判断字符串是否包含某字符串,String对象中查找子字符,indexOf

    var Cts = "bblText"; if(Cts.indexOf("Text") > 0 ) { alert('Cts中包含Text字符串'); }

  6. adt安装慢解决

    原地址:http://yuanzhifei89.iteye.com/blog/1884398 安装adt的时候不管时在线安装还是下载下来了离线安装,都不见安装进度条动,只要把一个选项勾掉立马就让进度条 ...

  7. Chp2: Linked List

    2.2 Implement an algorithm to find the kth to last element of a singly linked list. Just using " ...

  8. 【Visual C++】一些开发心得与调试技巧

    自己平时收集的一些技巧与心得,这里分享出来,普及一下知识. 1.如何在Release状态下进行调试 Project->Setting=>ProjectSetting对话框,选择Releas ...

  9. ajax请求返回json数据弹出下载框的解决方法

    将返回的Content-Type由application/json改为text/html. 在struts2下: <action name="XXXAjax" class=& ...

  10. mvc学习

    视频: http://edu.51cto.com/index.php?do=lession&id=14581 博客: http://www.cnblogs.com/chsword/archiv ...