bzoj1297: [SCOI2009]迷路
矩阵。
一个图的邻接矩阵的m次幂相当于 长度恰好为m的路径数。这要求边权为1。
因为边权小于等于9,所以可以把一个点拆成9的点。 拆成的第(i+1)个点向第i个点连边。
如果存在边(u,v,w) 就由u点向v拆成的第w个点连边,这样表明w次以后就可以到达v点。
这个拆点很牛啊,不过第一眼连邻接矩阵都没看出来。。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 100 + 10;
const int mod = 2009; struct Matrix {
int a[maxn][maxn];
int n; int* operator [] (int x) {
return a[x];
} Matrix operator* (Matrix b) {
Matrix c;
c.n=n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
c[i][k]=(c[i][k]+a[i][j]*b[j][k])%mod;
return c;
} Matrix operator^ (int e) {
Matrix res,tmp=*this;
res.init(n);
while(e) {
if(e&1) res=res*tmp;
tmp=tmp*tmp;
e>>=1;
}
return res;
} void output() {
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++)
printf("%d ",a[i][j]);
printf("\n");
}
} void input() {
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&a[i][j]);
} void init(int k) {
n=k;
for(int i=1;i<=n;i++) a[i][i]=1;
} Matrix() {
memset(a,0,sizeof(a));
}
}g,res; int n,m,k,vid;
int id[maxn][maxn]; int main() {
scanf("%d%d",&n,&m);
k=n*9; res.n=g.n=k;
for(int i=1;i<=n;i++)
for(int j=1;j<=9;j++)
id[i][j]=++vid; for(int i=1;i<=n;i++)
for(int j=1;j<9;j++)
g[id[i][j+1]][id[i][j]]=1; for(int i=1,t;i<=n;i++)
for(int j=1;j<=n;j++) {
scanf("%1d",&t);
if(!t) continue;
g[id[i][1]][id[j][t]]=1;
}
for(int i=1;i<=k;i++) res[i][i]=1;
res=res*(g^m);
printf("%d\n",res[id[1][1]][id[n][1]]);
return 0;
}
bzoj1297: [SCOI2009]迷路的更多相关文章
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 993[Submit][Status] ...
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ1297 [SCOI2009]迷路 【矩阵优化dp】
题目 windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意: ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
- bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...
- 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)
[BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...
随机推荐
- .NET开源项目介绍及资源推荐:数据持久层
在.NET平台下,关于数据持久层框架非常多,本文主要对如下几种做简要的介绍并推荐一些学习的资源: 1.NHibernate 2.NBear 3.Castle ActiveRecord 4.iBATIS ...
- Learn know more about big data
As we all know,we are in a big data age now."Every sword has two slides",as a ITer,we shou ...
- c++ 原子操作
转载自: http://blog.csdn.net/yockie/article/details/8838686 所谓的原子操作,取的就是“原子是最小的.不可分割的最小个体”的意义,它表示在多个线程访 ...
- 虚拟机移动后重启网络时提示Device does not seem to be present
Wmware虚拟机硬盘文件位置移动之后,重新引入到Wmware workStation中, 通过命令ifconfig...没有看到eth0..然后重启网卡 #service network resta ...
- SQL Server 之 DBCC
--检查索引碎片情况 dbcc showconfig(tablename) 具体例子: --上图为碎片整理之前 ALTER INDEX ALL on Citation REBUILD --下图为碎片整 ...
- 前端学习笔记汇总(之merge方法)
学习笔记 关于Jquery的merge方法 话不多说,先上图 使用jquery时,其智能提示如上,大概意思就是合并first和second两个数组,得到的结果是first+(second去重后的结果) ...
- POJ 1182 食物链(种类并查集)
记得第一次做这道题的时候,推关系感觉有点复杂,而且写完代码后一直WA,始终找不出错误. 在A了十几道并查集后,再做这道题,发现太小儿科了.发现原来之所以WA,就在于查找根节点时,没有同步更新子节点相对 ...
- .NET复习笔记
.NET 基础知识点汇总 课前知识储备. 一.C#与.NET的区别? 1..NET/dotnet:一般指.Net Framework框架,一种平台,一种技术 2.C#(sharp):一种编程语言,可以 ...
- MQTT客户端与服务代理的案列
服务端,采用 Mosquitto 来转发分发消息. 客户端自己写. 服务端 启动 mosquitto (底下的命令是我自己放到环境变量里面的,通过alias 运行mosquitto) Ishallbe ...
- N皇后//搜索入门
P1080 N皇后 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列只有一个,每条 ...