bzoj1297: [SCOI2009]迷路
矩阵。
一个图的邻接矩阵的m次幂相当于 长度恰好为m的路径数。这要求边权为1。
因为边权小于等于9,所以可以把一个点拆成9的点。 拆成的第(i+1)个点向第i个点连边。
如果存在边(u,v,w) 就由u点向v拆成的第w个点连边,这样表明w次以后就可以到达v点。
这个拆点很牛啊,不过第一眼连邻接矩阵都没看出来。。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 100 + 10;
const int mod = 2009; struct Matrix {
int a[maxn][maxn];
int n; int* operator [] (int x) {
return a[x];
} Matrix operator* (Matrix b) {
Matrix c;
c.n=n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
c[i][k]=(c[i][k]+a[i][j]*b[j][k])%mod;
return c;
} Matrix operator^ (int e) {
Matrix res,tmp=*this;
res.init(n);
while(e) {
if(e&1) res=res*tmp;
tmp=tmp*tmp;
e>>=1;
}
return res;
} void output() {
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++)
printf("%d ",a[i][j]);
printf("\n");
}
} void input() {
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&a[i][j]);
} void init(int k) {
n=k;
for(int i=1;i<=n;i++) a[i][i]=1;
} Matrix() {
memset(a,0,sizeof(a));
}
}g,res; int n,m,k,vid;
int id[maxn][maxn]; int main() {
scanf("%d%d",&n,&m);
k=n*9; res.n=g.n=k;
for(int i=1;i<=n;i++)
for(int j=1;j<=9;j++)
id[i][j]=++vid; for(int i=1;i<=n;i++)
for(int j=1;j<9;j++)
g[id[i][j+1]][id[i][j]]=1; for(int i=1,t;i<=n;i++)
for(int j=1;j<=n;j++) {
scanf("%1d",&t);
if(!t) continue;
g[id[i][1]][id[j][t]]=1;
}
for(int i=1;i<=k;i++) res[i][i]=1;
res=res*(g^m);
printf("%d\n",res[id[1][1]][id[n][1]]);
return 0;
}
bzoj1297: [SCOI2009]迷路的更多相关文章
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 993[Submit][Status] ...
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ1297 [SCOI2009]迷路 【矩阵优化dp】
题目 windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意: ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
- bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...
- 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)
[BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...
随机推荐
- 爬虫-html
Uri myUri =new Uri(@sURL); WebRequest wrq = WebRequest.Create(myUri); WebResponse wrs = wrq.GetRespo ...
- Careercup - Google面试题 - 5732809947742208
2014-05-03 22:10 题目链接 原题: Given a dictionary, and a list of letters ( or consider as a string), find ...
- Android SDK Android NDK 官方下载地址
Android NDK r6b Windows http://dl.google.com/android/ndk/android-ndk-r6b-windows.zip Mac OS X(intel) ...
- OpenCV+QT开发环境(一):Windows环境
最近在学习openCV的开发.在搭建开发环境的时候,着实废了不少功夫,找了大量的文章资料.其实主要的开发还是在linux系统上的openCV,但是为了方便,我还是在windows上也搭建了开发环境,这 ...
- 工程移除CocoaPods依赖库
http://zanderzhang.gitcafe.io/2015/09/26/工程移除CocoaPods依赖库/ 点这里--->CocoaPods安装和使用教程 当我们工程安装很多第三方开源 ...
- 在客户环境定位.net程序异常
http://www.cnblogs.com/yuilin/p/3788796.html 我们的程序最后都会运行在客户的环境中,客户环境上不会有VS这样的开发工具,那么怎么办呢? 我们可以使用一个很小 ...
- Linux安装python 2.7.9
1.下载python wget https://www.python.org/ftp/python/2.7.9/Python-2.7.9.tgz 2.解压.编译安装 tar -zxvf Python- ...
- DC-DC升压(BOOST)电路原理
BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和 ...
- 实战案例--Grunt构建Web程序
GruntJS构建Web程序.使用Gruntjs来搭建一个前端项目,然后使用grunt合并,压缩JS文件,熟练了node.js安装和grunt.js安装后,接下来来实战一个案例,案例是根据snandy ...
- [SQL Server 系] T-SQL数据库的创建与修改
创建数据库 USE master; GO CREATE DATABASE ToyUniverse ON ( NAME = ToyUniverse_Data, FILENAME = 'F:\Projec ...