题意

给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图。

思路

2013多校第四场1004题。和官方题解思路一样,就直接贴了~

最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边,假设X部有x个点,Y部有y个点,有x+y=n,同时边数F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,当x+y为定值时,二者越接近,x*y越大,所以要使得边数最多,那么X部和Y部的点数的个数差距就要越大,所以首先对于给定的有向图缩点,对于缩点后的每个点,如果它的出度或者入度为0,那么它才有可能成为X部或者Y部,所以只要求缩点之后的出度或者入度为0的点中,包含节点数最少的那个点,令它为一个部,其它所有点加起来做另一个部,就可以得到最多边数的图了

代码

#include
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXN = 10005;
const int MAXM = 50005;
struct SCC{
int scc_num, scc[MAXN]; //强连通分量总数、每个节点所属的强连通分量
int scc_acount[MAXN]; //每个强连通分量的节点个数
int dfn[MAXN], low[MAXN], id;
stack st;
bool vis[MAXN], instack[MAXN];
int cnt, head[MAXN];

struct node{
int u, v;
int next;
}arc[MAXM];

void init(){
cnt = 0;
mem(head, -1);
return ;
}
void add(int u, int v){
arc[cnt].u = u;
arc[cnt].v = v;
arc[cnt].next = head[u];
head[u] = cnt ++;
}
void dfs(int u){
vis[u] = instack[u] = 1;
st.push(u);
dfn[u] = low[u] = ++ id;
for (int i = head[u]; i != -1; i = arc[i].next){
int v = arc[i].v;
if (!vis[v]){
dfs(v);
low[u] = min(low[u], low[v]);
}
else if (instack[v]){
low[u] = min(low[u], dfn[v]);
}
}
if (low[u] == dfn[u]){
++ scc_num;
while(st.top() != u){
scc[st.top()] = scc_num;
scc_acount[scc_num] ++;
instack[st.top()] = 0;
st.pop();
}
scc[st.top()] = scc_num;
scc_acount[scc_num] ++;
instack[st.top()] = 0;
st.pop();
}
return ;
}
void tarjan(int n){
mem(scc_acount, 0);
mem(vis, 0);
mem(instack, 0);
mem(dfn, 0);
mem(low, 0);
mem(scc, 0);
id = scc_num = 0;
while(!st.empty())
st.pop();
for (int i = 1; i maxn){
maxn = num;
}
}
}
printf("Case %d: %I64d\n", ca, maxn);
}
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int t;
scanf("%d", &t);
for (ca = 1; ca

HDU 4635 Strongly connected (强连通分量)的更多相关文章

  1. HDU 4635 Strongly connected (强连通分量+缩点)

    <题目链接> 题目大意: 给你一张有向图,问在保证该图不能成为强连通图的条件下,最多能够添加几条有向边. 解题分析: 我们从反面思考,在该图是一张有向完全图的情况下,最少删去几条边能够使其 ...

  2. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  3. HDU 4635 Strongly connected(强连通)经典

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. hdu 4635 Strongly connected 强连通

    题目链接 给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图. 只做过加多少条边变成强连通的, 一下子就懵逼了 我们可以反过来想. 最后的图不是强连通, 那么我们一定可以将它分 ...

  5. HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. HDU 4635 Strongly connected(强连通分量,变形)

    题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...

  7. HDU 4635 - Strongly connected(2013MUTC4-1004)(强连通分量)

    t这道题在我们队属于我的范畴,最终因为最后一个环节想错了,也没搞出来 题解是这么说的: 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯 ...

  8. HDU 4635 Strongly connected ——(强连通分量)

    好久没写tarjan了,写起来有点手生,还好1A了- -. 题意:给定一个有向图,问最多添加多少条边,让它依然不是强连通图. 分析:不妨考虑最大时候的临界状态(即再添加一条边就是强连通图的状态),假设 ...

  9. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. 文本编辑器 markdown

    http://www.cnblogs.com/youxia/p/linux014.html markdown对数学公式的支持http://www.linuxidc.com/Linux/2014-08/ ...

  2. P2661 信息传递 强连通分量

    题目链接: http://www.luogu.org/problem/show?pid=2661 题解: 这题求最小的单向环. 可因为每个节点初度为1,所以所有的强联通分量都只能是单向环. 所以就是有 ...

  3. hadoop+hbase

    hadoop的配置见下面这篇文章 http://www.powerxing.com/install-hadoop-2-4-1-single-node/ Hadoop安装教程_单机/伪分布式配置_Had ...

  4. Oracle RAC 常用维护工具和命令

    Oracle RAC 常用维护工具和命令 分类: Oracle Basic Knowledge Oracle RAC2010-03-09 01:02 13987人阅读 评论(6) 收藏 举报 orac ...

  5. 精华阅读第 9 期 |滴滴出行 iOS 客户端架构演进之路

    「架构都是演变出来的,没有最好的架构,只有最合适的架构!」最近,滴滴出行平台产品中心 iOS 技术负责人李贤辉接受了 infoQ 的采访,阐述了滴滴的 iOS 客户端架构模式与演变过程.李贤辉也是移动 ...

  6. REST_FRAMEWORK加深记忆-第二次练习官方文档

    我想,其它几个基于PYTHON的REST API模块概念都差不多吧. 先深入搞定这个吧. 前几次练习完了有一些印象,并且在工作中实践过一个,现在多弄几次,玩熟悉点. Serializers.py __ ...

  7. Oracle 体系结构2 - 共享和专用服务器

    1. 怎么查看自己的oracle是共享还是专用服务器 2. 怎么修改设置 3.各有什么优缺点 4.适用环境 对于专用服务器,每一个数据库连接,oracle都会分配一个专门的进程为其服务 oracle@ ...

  8. Project Euler 83:Path sum: four ways 路径和:4个方向

    Path sum: four ways NOTE: This problem is a significantly more challenging version of Problem 81. In ...

  9. application.xml定时

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  10. FireMonkey支持的机型

    酷派5890(android 4.1.2) 从截图上看,正常.不知道为啥说不行.海信 T96(android 4.0.3) CPU 不支持 NEON.没辙.摩托罗拉XT885(android 4.0. ...