BZOJ2337: [HNOI2011]XOR和路径
题解:
异或操作是每一位独立的,所以我们可以考虑每一位分开做。
假设当前正在处理第k位
那令f[i]表示从i到n 为1的概率。因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元。
若有边i->j 权值为w,若w的k位为0,则f[i]+=1/du[i] * f[j],否则f[i]+=(1-f[j])/du[i]
注意我们现在在往回走,所以度数是i的而不是j的。
然后就可以高斯消元解出来了。
装X用模方程的lcm然后发现导致误差越来越大,WA出翔
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 200+5
#define maxm 200000+5
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define for5(n,m) for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,tot,d[maxn],head[maxn];
struct edge{int go,next,w;}e[maxm];
inline void add(int x,int y,int w)
{
e[++tot]=(edge){y,head[x],w};head[x]=tot;
}
double ans,a[maxn][maxn];
inline void gauss()
{
//for1(i,n){for1(j,n+1)cout<<a[i][j]<<' ';cout<<endl;}
for1(i,n)
{
int k=i;
for2(j,i+,n)if(fabs(a[j][i])>fabs(a[k][i]))k=j;
for2(j,i,n+)swap(a[i][j],a[k][j]);
for2(j,i+,n)
{
double t=a[j][i]/a[i][i];
for2(x,i,n+)a[j][x]=a[i][x]*t-a[j][x];
}
}
//for1(i,n){for1(j,n+1)cout<<a[i][j]<<' ';cout<<endl;}
for3(i,n,)
{
//cout<<a[i][i]<<' '<<a[i][n+1]<<"fuck"<<endl;
for2(j,i+,n)a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
//cout<<i<<' '<<a[i][n+1]<<endl;
}
}
int main()
{
n=read();m=read();
for1(i,m)
{
int x=read(),y=read(),w=read();
if(x!=y){d[x]++;d[y]++;add(x,y,w);add(y,x,w);}
else {d[x]++;add(x,x,w);}
}
for0(j,)
{
memset(a,,sizeof(a));
for1(x,n-)
{
a[x][x]=-1.0;
double t=1.0/(double)d[x];
for4(i,x)
if(e[i].w>>j&)a[x][n+]-=t,a[x][y]-=t;
else a[x][y]+=t;
}
a[n][n]=1.0;
gauss();
//cout<<a[1][n+1]<<' '<<(1<<j)<<endl;
ans+=a[][n+]*(<<j);
}
printf("%.3f\n",ans);
return ;
}
2337: [HNOI2011]XOR和路径
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 515 Solved: 281
[Submit][Status]
Description

BZOJ2337: [HNOI2011]XOR和路径的更多相关文章
- BZOJ2337:[HNOI2011]XOR和路径(高斯消元)
Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...
- [BZOJ2337][HNOI2011]XOR和路径(概率+高斯消元)
直接不容易算,考虑拆成位处理. 设f[i]表示i到n的期望路径异或和(仅考虑某一位),则$f[y]=\sum\limits_{exist\ x1\to y=0}\frac{f[x1]}{d[x1]}+ ...
- BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...
- BZOJ2337 [HNOI2011]XOR和路径 【概率dp + 高斯消元】
题目 题解 突然get到这样路径期望的题目八成是高斯消元 因为路径上的dp往往具有后效性,这就形成了一个方程组 对于本题来说,直接对权值dp很难找到突破口 但是由于异或是位独立的,我们考虑求出每一位的 ...
- BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)
解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...
- bzoj千题计划191:bzoj2337: [HNOI2011]XOR和路径
http://www.lydsy.com/JudgeOnline/problem.php?id=2337 概率不能异或 但根据期望的线性,可以计算出每一位为1的概率,再累积他们的期望 枚举每一位i,现 ...
- BZOJ2337: [HNOI2011]XOR和路径 期望概率dp 高斯
这个题让我认识到我以往对于图上期望概率的认识是不完整的,我之前只知道正着退还硬生生的AC做过的所有图,那么现在让我来说一下逆退,一般来说对于概率性的东西都只是正推,因为有了他爸爸才有了他,而对于期望性 ...
- 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元
[BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
随机推荐
- Flex显示麦克风当前音量
Flex动态显示麦克风当前音量 效果: 代码: <?xml version="1.0" encoding="utf-8"?> <s:Appli ...
- 邻结矩阵的建立和 BFS,DFS;;
邻结矩阵比较简单,, 它的BFS,DFS, 两种遍历也比较简单,一个用队列, 一个用数组即可!!!但是邻接矩阵极其浪费空间,尤其是当它是一个稀疏矩阵的时候!!!-------------------- ...
- oracle merge into 语法
MERGE INTO upperLowerLimitData t1 USING (select name,enname,starttime,value ... from dual) t2 ON ( ...
- Linux 命令整理 —— 基本操作
1.ls 目录列举(dir) 一般我们这么写: ls 列举当前目录的所有文件,如果文件很多的话,这么看很复杂.我们可以加关键字,例如我们要看包含xml的全部文件. ls *xml* 如果这个时候,我们 ...
- PHP之implode与explode函数讲解
implode (PHP 4, PHP 5) implode — 将一个一维数组的值转化为字符串 说明¶ string implode ( string $glue , array $pieces ) ...
- spring <context:component-scan>(转)
在xml配置了这个标签后,spring可以自动去扫描base-pack下面或者子包下面的java文件,如果扫描到有@Component @Controller@Service等这些注解的类,则把这些类 ...
- VMware Workstation 10安装Centos6.4操作步骤说明
1.在网上下载VMware Workstation 10, 百度软件中心助手安装程序高速下载,下载完成后默认是自动启动安装的,而原来的安装程序文件保存在: C:\Users\用户名\Document ...
- 1. what is Lua?
glue language Lua is a proven, robust language, small.
- **使用 Git Hook 实现网站的自动部署
http://www.tuicool.com/articles/3QRB7jU 自动化能解放人类的双手,而且更重要的是,因为按照规定的流程来走,也减少了很多误操作的产生.不知道大家平时都是怎么样更新自 ...
- HDU 3501 Calculation 2 (欧拉函数)
题目链接 题意 : 求小于n的数中与n不互质的所有数字之和. 思路 : 欧拉函数求的是小于等于n的数中与n互质的数个数,这个题的话,先把所有的数字之和求出来,再减掉欧拉函数中所有质数之和(即为eula ...