RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它。但是有不少新来的同事对它不太了解,恰好看到一本书中作者用实例对它进行了简化而生动的描述,使得高深的数学理论能够被容易地理解。我们经过整理和改写特别推荐给大家阅读,希望能够对时间紧张但是又想了解它的同事有所帮助。
RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的可信性,目前它已经成为最流行的公开密钥算法。
RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。
RSA的公钥、私钥的组成,以及加密、解密的公式可见于下表:

可能各位同事好久没有接触数学了,看了这些公式不免一头雾水。别急,在没有正式讲解RSA加密算法以前,让我们先复习一下数学上的几个基本概念,它们在后面的介绍中要用到:
一、 什么是“素数”?
素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。素数也称为“质数”。
二、什么是“互质数”(或“互素数”)?
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。
判别方法主要有以下几种(不限于此):
(1)两个质数一定是互质数。例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。
(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。
三、什么是模指数运算?
指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。
模指数运算就是先做指数运算,取其结果再做模运算。
好,现在开始正式讲解RSA加密算法。
算法描述:
(1)选择一对不同的、足够大的素数p,q。
(2)计算n=pq。
(3)计算f(n)=(p-1)(q-1),同时对p, q严加保密,不让任何人知道。
(4)找一个与f(n)互质的数e,且1<e<f(n)。
(5)计算d,使得de≡1 mod f(n)。这个公式也可以表达为d ≡e-1 mod f(n)
这里要解释一下,≡是数论中表示同余的符号。公式中,≡符号的左边必须和符号右边同余,也就是两边模运算结果相同。显而易见,不管f(n)取什么值,符号右边1 mod f(n)的结果都等于1;符号的左边d与e的乘积做模运算后的结果也必须等于1。这就需要计算出d的值,让这个同余等式能够成立。
(6)公钥KU=(e,n),私钥KR=(d,n)。
(7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:
(8)解密过程为:
实例描述:
在这篇科普小文章里,不可能对RSA算法的正确性作严格的数学证明,但我们可以通过一个简单的例子来理解RSA的工作原理。为了便于计算。在以下实例中只选取小数值的素数p,q,以及e,假设用户A需要将明文“key”通过RSA加密后传递给用户B,过程如下:
(1)设计公私密钥(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3与20互质)则e×d≡1 mod f(n),即3×d≡1 mod 20。
d怎样取值呢?可以用试算的办法来寻找。试算结果见下表:

通过试算我们找到,当d=7时,e×d≡1 mod f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR =(d,n)=(7,33)。
(2)英文数字化。
  将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值,即:

则得到分组后的key的明文信息为:11,05,25。
(3)明文加密
用户加密密钥(3,33) 将数字化明文分组信息加密成密文。由C≡Me(mod n)得:

因此,得到相应的密文信息为:11,31,16。
4)密文解密。
用户B收到密文,若将其解密,只需要计算,即:

用户B得到明文信息为:11,05,25。根据上面的编码表将其转换为英文,我们又得到了恢复后的原文“key”。
你看,它的原理就可以这么简单地解释!
当然,实际运用要比这复杂得多,由于RSA算法的公钥私钥的长度(模长度)要到1024位甚至2048位才能保证安全,因此,p、q、e的选取、公钥私钥的生成,加密解密模指数运算都有一定的计算程序,需要仰仗计算机高速完成。
最后简单谈谈RSA的安全性
首先,我们来探讨为什么RSA密码难于破解?
在RSA密码应用中,公钥KU是被公开的,即e和n的数值可以被第三方窃听者得到。破解RSA密码的问题就是从已知的e和n的数值(n等于pq),想法求出d的数值,这样就可以得到私钥来破解密文。从上文中的公式:d ≡e-1 (mod((p-1)(q-1)))或de≡1 (mod((p-1)(q-1))) 我们可以看出。密码破解的实质问题是:从Pq的数值,去求出(p-1)和(q-1)。换句话说,只要求出p和q的值,我们就能求出d的值而得到私钥。
当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。比如当pq大到1024位时,迄今为止还没有人能够利用任何计算工具去完成分解因子的任务。因此,RSA从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。
此外,RSA的缺点还有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。因此,使用RSA只能加密少量数据,大量的数据加密还要靠对称密码算法。

RSA非对称算法(转)的更多相关文章

  1. RSA非对称算法实现HTTP密码加密传输

    目前一般帐号系统,都是https来传输账户性息,申请一个https证书也不贵.但是网站的其它功能并不需要走https协议,https和http混布比较麻烦,所以决定先实现一个http协议传输RSA非对 ...

  2. 记一次RSA非对称算法的排坑经历

    Map<String,Object> encryParam = new HashMap<>(5); encryParam.put("connectorUrl" ...

  3. 使用RSA非对称密钥算法实现硬件设备授权

    一.硬件设备授权 即用户在硬件设备输入一个序列号(或一个包含授权信息的文件),然后硬件设备便可正常使用.    二.授权方案 构思授权方案时,参考了下面网址的思路: http://bbs.csdn.n ...

  4. Atitit RSA非对称加密原理与解决方案

    Atitit RSA非对称加密原理与解决方案 1.1. 一.一点历史 1 1.2. 八.加密和解密 2 1.3. 二.基于RSA的消息传递机制  3 1.4. 基于rsa的授权验证机器码 4 1.5. ...

  5. 学习RSA公开密钥算法

    图为 RSA公开密钥算法的发明人,从左到右Ron Rivest, Adi Shamir, Leonard Adleman. 照片摄于1978年 (和讯财经原创) RSA加密算法是最常用的非对称加密算法 ...

  6. 重新想象 Windows 8 Store Apps (32) - 加密解密: 非对称算法, 数据转换的辅助类

    原文:重新想象 Windows 8 Store Apps (32) - 加密解密: 非对称算法, 数据转换的辅助类 [源码下载] 重新想象 Windows 8 Store Apps (32) - 加密 ...

  7. 前端js,后台python实现RSA非对称加密

    先熟悉使用 在后台使用RSA实现秘钥生产,加密,解密; # -*- encoding:utf-8 -*- import base64 from Crypto import Random from Cr ...

  8. JAVA RSA非对称加密详解[转载]

    一.概述1.RSA是基于大数因子分解难题.目前各种主流计算机语言都支持RSA算法的实现2.java6支持RSA算法3.RSA算法可以用于数据加密和数字签名4.RSA算法相对于DES/AES等对称加密算 ...

  9. php RSA非对称加密 的实现

    基本概念 加密的意义 加密的意义在于数据的传输过程中,即使被第三方获取到传输的数据,第三方也不能获取到数据的具体含义. 加密方式分为对称加密和非对称加密 什么是对称加密? 对称加密只使用一个秘钥,加密 ...

随机推荐

  1. 怎么从sqlserver 数据库导出 insert 的数据语句

    In SSMS in the Object Explorer, right click on the database right-click and pick "Tasks" a ...

  2. php和.net 的加密解密

    PHP版: $key = 335ff'; /* * 加密方法 * @param string $input,待加密的字符串 * @param string $key,加密的密码(只能为8位长) * @ ...

  3. RHAS Linux下架构Lotus Domino详解(附视频)

    此处下载操作视频:RHAS Linux下架构Lotus Domino 6.5视频教程      在rhas下架构Lotus Domino 汉化 650) this.width=650;" o ...

  4. 开发资源列表【Worldsing分享】

      ucGUI(emWin)类: ucGui 汉字库生成(汉字库提取工具):ucGuiFont点击下载 ucGui v3.98 VC模拟工程源代码(VS2008):ucGUI3.98 VS2008 点 ...

  5. Median of Two Sorted Arrays-----LeetCode

    There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted ...

  6. poj 1247 The Perfect Stall 裸的二分匹配,但可以用最大流来水一下

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16396   Accepted: 750 ...

  7. HDU 5437 Alisha’s Party (优先队列模拟)

    题意:邀请k个朋友,每个朋友带有礼物价值不一,m次开门,每次开门让一定人数p(如果门外人数少于p,全都进去)进来,当最后所有人都到了还会再开一次门,让还没进来的人进来,每次都是礼物价值高的人先进.最后 ...

  8. Linux下用arptables防arp攻击

    Linux下网络层防火墙iptables很强大,链路层也有类似的防火墙arptables,可针对arp地址进行限制,防止ARP网关欺骗攻击,再配合静态绑定MAC和向网关报告正确的本机MAC地址,有效解 ...

  9. 汇编语言程序入门实验二:在dos下建立子目录操作

    汇编语言程序入门实验二:在dos下建立子目录操作 1,背景 在读此文,并读懂前,建议读者先阅读这两篇博客 1,在dos环境下汇编语言程序设计入门(输出hello world)和masm32的下载.安装 ...

  10. linux 的 scp 命令 可以 在 linux 之间复制 文件 和 目录

    转自:http://blog.csdn.net/snlying/article/details/6184102 Linux系统中scp命令的用法. scp就是secure copy的简写,用于在lin ...