Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion
It is well known that if the square root of a natural number is not an integer, then it is irrational. The decimal expansion of such square roots is infinite without any repeating pattern at all.
The square root of two is 1.41421356237309504880…, and the digital sum of the first one hundred decimal digits is 475.
For the first one hundred natural numbers, find the total of the digital sums of the first one hundred decimal digits for all the irrational square roots.
众所周知,如果一个自然数的平方根不是整数,那么就一定是无理数。这样的平方根的小数部分是无限不循环的。
2的平方根为1.41421356237309504880…,它的小数点后一百位数字的和是475。
对于前一百个自然数,求所有无理数平方根小数点后一百位数字的总和。
解题
问题:如何求无理数的一百位小数?这真是无理取闹
在上面给的博客中给了一个很好的方法
对于 数 n 我们需要去根号n,如下很有意思的规律
def Suqareroot(n,digits):
limit = 10**(digits+ 1)
a = 5*n
b = 5
while b < limit:
if a>= b:
a -= b
b +=10
else:
a *= 100
b = int(b/10) * 100 + 5
return int(b/100)
说明下:
1.题目让求的是小数点前100位的值,包括整数位
2.上面算法只有最后b/100 是根号n的近似解,这里是去小数点的,只有为什么不是b表示不理解
JAVA
package Level3; import java.math.BigInteger;
import java.util.ArrayList; public class PE080{ void run(){
int j = 1;
int res = 0;
for(int i=1;i<=100;i++){
if(j*j==i){
j++;
continue;
}
res += Int_Sum(Squareroot(i,100));
}
System.out.println(res);
}
private Integer Int_Sum(BigInteger b){
int res = 0;
String str = b.toString();
for(int i=0;i<str.length() ;i++){
res += str.charAt(i) - '0';
}
return res;
}
private BigInteger Squareroot(int n,int digits){
// 定义上界
BigInteger limit = new BigInteger("10").pow(digits+1);
BigInteger five = new BigInteger("5");
BigInteger ten = new BigInteger("10");
BigInteger hunderd = new BigInteger("100");
BigInteger a = new BigInteger(n+"").multiply(five);
BigInteger b = five;
while( b.compareTo(limit) < 0){
if(a.compareTo(b) >=0){
a = a.subtract(b);
b = b.add(ten);
}else{
a = a.multiply(hunderd);
b = b.divide(ten).multiply(hunderd).add(five);
}
}
return b.divide(hunderd);
} public static void main(String[] args){
long t0 = System.currentTimeMillis();
new PE080().run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms"); }
}
40886
running time=0s34ms
Python
import time ; def Suqareroot(n,digits):
limit = 10**(digits+1)
a = 5*n
b = 5
while b < limit:
if a>= b:
a -= b
b +=10
else:
a *= 100
b = int(b/10) * 100 + 5
return int(b/100) def Int_Sum(n):
res = sum(map(lambda x:int(x),unicode(n)))
return res
if __name__=='__main__':
t0 = time.time()
limit = 1000000
result = 0
j = 1
for i in range(1,101):
if j*j == i:
j+=1
continue
result += Int_Sum(Suqareroot(i,100))
print result
t1 = time.time()
print "running time=",(t1-t0),"s" #
# running time= 0.039999961853 s
这样的 程序好无节操
from decimal import Decimal,getcontext
getcontext().prec=102
N = set(range(2,100)) - set([4,9,16,25,36,49,64,81])
s = 0
for n in N:
d = Decimal(n).sqrt()
s += sum([int(i) for i in str(d).replace(".","")[:100]])
print(s)
Project Euler 80:Square root digital expansion 平方根数字展开的更多相关文章
- Project Euler #80: Square root digital expansion
from decimal import getcontext, Decimal def main(): n = int(raw_input()) p = int(raw_input()) getcon ...
- Project Euler 57: Square root convergents
五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Project Euler 92:Square digit chains C++
A number chain is created by continuously adding the square of the digits in a number to form a new ...
- Project Euler 90:Cube digit pairs 立方体数字对
Cube digit pairs Each of the six faces on a cube has a different digit (0 to 9) written on it; the s ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- Project Euler 59: XOR decryption
计算机上的每个字母都对应一个独特的编号,普遍接受的标准是ASCII(美国信息交换标准代码).例如,大写字母的A的ASCII码是65,星号(*)的ASCII码是42,而小写字母k的代码是107. 一种现 ...
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Python练习题 034:Project Euler 006:和平方与平方和之差
本题来自 Project Euler 第6题:https://projecteuler.net/problem=6 # Project Euler: Problem 6: Sum square dif ...
随机推荐
- IE8浏览器跨域接口访问异常的解决办法
IE8版本以下浏览器绝对是一个神奇的存在,忙碌好久,万事具备,居然在ajax调用接口的时候直接爆炸 陈述一下问题 首先是有这样一个接口,请求类型POST,入参JSON,出参JSON,jQuery aj ...
- isNotNull与isNotEmpty的区别
<isNotNull> 检查属性是否不为null <isNotEmpty> 检查Collection.size()的值,属性的String或String.valueOf()值, ...
- CentOS 6.X安装LAMP最高版本环境
#------------CentOS .X安装LAMP最高版本环境------------------ #! /bin/sh #安装Apache yum install httpd -y #.关 ...
- asp.net图片上传实例
网站后台都需要有上传图片的功能,下面的例子就是实现有关图片上传. 缺点:图片上传到本服务器上,不适合大量图片上传. 第一.图片上传,代码如下: xxx.aspx 复制代码代码如下: <td cl ...
- php威盾解密的例子分享
例子,批量解密 代码如下 复制代码 <?php/************************************威盾PHP加密专家解密算法 By:zhrt*http://www.111 ...
- PHP CodeIgniter(CI)去掉 index.php
去掉CodeIgniter(CI)默认url中的index.php的步骤: 1.打开apache的配置文件,conf/httpd.conf : LoadModule rewrite_module mo ...
- Sending Email from mailx Command in Linux Using Gmail’s SMTP
The mailx or mail command in Linux is still providing service for guys like me, especially when we n ...
- python 字典内置方法get应用
python字典内置方法get应用,如果我们需要获取字典值的话,我们有两种方法,一个是通过dict['key'],另外一个就是dict.get()方法. 今天给大家分享的就是字典的get()方法. 这 ...
- float类型进行计算精度丢失的问题
今天一个案子,用户反映数量差异明明是 2.0-1.8,显示的结果却为0.20000005,就自己写了段方法测试了一下:package test1;public class Test2 {/*** @p ...
- MVC初学 - The type or namespace name 'DbContext' could not be found
问题: The type or namespace name 'DbContext' could not be found (are you missing a using directive or ...