原文:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html

单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一.最短路径的最优子结构性质

该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二.Dijkstra算法

由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,

假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。

1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;

2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})

3.知道U=V,停止。

代码实现:

/*Dijkstra求单源最短路径 2010.8.26*/

#include <iostream>
#include<stack>
#define M 100
#define N 100
using namespace std; typedef struct node
{
int matrix[N][M]; //邻接矩阵
int n; //顶点数
int e; //边数
}MGraph; void DijkstraPath(MGraph g,int *dist,int *path,int v0) //v0表示源顶点
{
int i,j,k;
bool *visited=(bool *)malloc(sizeof(bool)*g.n);
for(i=0;i<g.n;i++) //初始化
{
if(g.matrix[v0][i]>0&&i!=v0)
{
dist[i]=g.matrix[v0][i];
path[i]=v0; //path记录最短路径上从v0到i的前一个顶点
}
else
{
dist[i]=INT_MAX; //若i不与v0直接相邻,则权值置为无穷大
path[i]=-1;
}
visited[i]=false;
path[v0]=v0;
dist[v0]=0;
}
visited[v0]=true;
for(i=1;i<g.n;i++) //循环扩展n-1次
{
int min=INT_MAX;
int u;
for(j=0;j<g.n;j++) //寻找未被扩展的权值最小的顶点
{
if(visited[j]==false&&dist[j]<min)
{
min=dist[j];
u=j;
}
}
visited[u]=true;
for(k=0;k<g.n;k++) //更新dist数组的值和路径的值
{
if(visited[k]==false&&g.matrix[u][k]>0&&min+g.matrix[u][k]<dist[k])
{
dist[k]=min+g.matrix[u][k];
path[k]=u;
}
}
}
} void showPath(int *path,int v,int v0) //打印最短路径上的各个顶点
{
stack<int> s;
int u=v;
while(v!=v0)
{
s.push(v);
v=path[v];
}
s.push(v);
while(!s.empty())
{
cout<<s.top()<<" ";
s.pop();
}
} int main(int argc, char *argv[])
{
int n,e; //表示输入的顶点数和边数
while(cin>>n>>e&&e!=0)
{
int i,j;
int s,t,w; //表示存在一条边s->t,权值为w
MGraph g;
int v0;
int *dist=(int *)malloc(sizeof(int)*n);
int *path=(int *)malloc(sizeof(int)*n);
for(i=0;i<N;i++)
for(j=0;j<M;j++)
g.matrix[i][j]=0;
g.n=n;
g.e=e;
for(i=0;i<e;i++)
{
cin>>s>>t>>w;
g.matrix[s][t]=w;
}
cin>>v0; //输入源顶点
DijkstraPath(g,dist,path,v0);
for(i=0;i<n;i++)
{
if(i!=v0)
{
showPath(path,i,v0);
cout<<dist[i]<<endl;
}
}
}
return 0;
}

【转】Dijkstra算法(单源最短路径)的更多相关文章

  1. Dijkstra算法——单源最短路径问题

    学习一个点到其余各个顶点的最短路径--单源最短路径 Dijkstra算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向 ...

  2. Dijkstra求解单源最短路径

    Dijkstra(迪杰斯特拉)单源最短路径算法 Dijkstra思想 Dijkstra是一种求单源最短路径的算法. Dijkstra仅仅适用于非负权图,但是时间复杂度十分优秀. Dijkstra算法主 ...

  3. Dijkstra算法——单源最短路算法

    一.介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他各个节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 适用于有 ...

  4. hdu 2680 最短路径(dijkstra算法+多源最短路径单源化求最小值)这题有点意思

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  6. 单源最短路径——dijkstra算法

    dijkstra算法与prim算法的区别   1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的 ...

  7. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)

    一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...

  8. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)

    一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...

  9. Dijkstra 单源最短路径算法

    Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...

随机推荐

  1. memcached 最大连接数及其内存大小的设置

    memcached的基本设置: -p 监听的端口-l 连接的IP地址, 默认是本机-d start 启动memcached服务-d restart 重起memcached服务-d stop|shutd ...

  2. Android UI——分享一个登录缓冲界面

    效果如上图 所示 :就是下面的 loading  字母会按顺序一个个的 动起来 ,很好的效果 代码说明 请参考 该文:http://blog.csdn.net/xyz_lmn/article/deta ...

  3. C#的switch与二维数组.....

    今天由于工作上的需要, 改了几行C#  的代码, 发现有一些细微的语法区别,与C++, 像switch语句那样, 我一般不会在default后面加上break,语句, 可是发现如果不加上的话,就会报下 ...

  4. spring3.0.5的aop使用

    spring3.0.5开始支持jpa2.0了,但是最近笔者在使用他的的时候发现了3.0.5的包与2.5.5相比,有所精简.其他外部的包,我们需要自己下载. AOP必须的spring包 org.spri ...

  5. 对Spring IoC容器实现的结构分析

    本文的目标:从实现的角度来认识SpringIoC容器. 观察的角度:从外部接口,内部实现,组成部分,执行过程四个方面来认识SpringIoC容器. 本文的风格:首先列出SpringIoC的外部接口及内 ...

  6. Zend Framework 入门(4)—页面布局

    Zend Framework 的页面布局模块——Zend_Layout——既可以跟 MVC 一起使用,也可以单独使用.本文只讨论与 MVC 一起使用的情况. 1. 布局脚本 在 application ...

  7. HDU 4422 The Little Girl who Picks Mushrooms

    题意:一共有5座山,已知小女孩在n座山采了n篮蘑菇,如果n小于5则在其他的山里采了任意重量的蘑菇,给出每篮蘑菇的重量,她回去的时候会遇到仨女巫要她交出三篮蘑菇的重量和恰好为1024的倍数,否则就把她的 ...

  8. 关于AsyncTask 的退出

    public class Task extends AsyncTask<Void, Void, Void>{ @Overrideprotected Void doInBackground( ...

  9. DateTime.ToString格式化日期,使用DateDiff方法获取日期时间的间隔数

    一:DateTime.ToString格式化日期 二:代码 using System; using System.Collections.Generic; using System.Component ...

  10. 基于51,人体红外感应和RC522的门禁系统

    总结一下最近学的东西,这两天学的东西,rfid门卡系统终于弄出来来了,这个程序算现在写过的比较满意的程序,大家可以参考参考 主函数: #include<reg52.h> #include& ...