BZOJ 2243: [SDOI2011]染色 (树链剖分+线段树合并)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2243
树链剖分的点剖分+线段树。漏了一个小地方,调了一下午...... 还是要细心啊!
结构体里lc表示这个区间的最左端的颜色,rc表示这个区间的最右端的颜色,sum表示这个区间的颜色段数目。回溯合并的时候要注意,左孩子的右端颜色要是等于右孩子左端颜色 sum就要-1。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN = 2e5 + ;
struct data {
int next , to;
}edge[MAXN << ];
struct segtree {
int l , r , sum , lazy; //sum表示颜色段数量,lazy表示颜色延迟标记
int lc , rc; //lc表示区间的最左端颜色,rc表示最右端颜色
}T[MAXN << ];
int head[MAXN] , tot;
int son[MAXN] , size[MAXN] , par[MAXN] , dep[MAXN] , cnt;
int top[MAXN] , id[MAXN] , fid[MAXN];
int a[MAXN]; void init() {
memset(head , - , sizeof(head));
tot = cnt = ;
} inline void add(int u , int v) {
edge[tot].next = head[u];
edge[tot].to = v;
head[u] = tot++;
} void dfs1(int u , int p , int d) {
dep[u] = d , size[u] = , son[u] = u , par[u] = p;
for(int i = head[u] ; ~i ; i = edge[i].next) {
int v = edge[i].to;
if(v == p)
continue;
dfs1(v , u , d + );
if(size[v] >= size[son[u]])
son[u] = v;
size[u] += size[v];
}
} void dfs2(int u , int p , int t) {
top[u] = t , id[u] = ++cnt;
fid[cnt] = u;
if(son[u] != u)
dfs2(son[u] , u , t);
for(int i = head[u] ; ~i ; i = edge[i].next) {
int v = edge[i].to;
if(v == p || v == son[u])
continue;
dfs2(v , u , v);
}
} void pushdown(int p) {
if(T[p].lazy != -) {
int ls = p << , rs = (p << )|;
T[ls].rc = T[ls].lc = T[rs].lc = T[rs].rc = T[p].lazy;
T[ls].lazy = T[rs].lazy = T[p].lazy;
T[ls].sum = T[rs].sum = ; //变成同一个颜色 sum就为1了
T[p].lazy = -;
}
} void pushup(int p) {
T[p].lc = T[p << ].lc , T[p].rc = T[(p << )|].rc; //这里注意要回溯上来,父节点的左右端颜色要更新
T[p].sum = T[p << ].sum + T[(p << )|].sum - (T[p << ].rc == T[(p << )|].lc); //合并操作:要是左孩子的最右端颜色等于右孩子最左端颜色,那就需要-1
} void build(int p , int l , int r) {
int mid = (l + r) >> ;
T[p].r = r , T[p].l = l , T[p].lc = a[fid[l]] , T[p].rc = a[fid[r]] , T[p].lazy = -;
if(l == r) {
T[p].sum = ;
return ;
}
build(p << , l , mid);
build((p << )| , mid + , r);
pushup(p);
} void update(int p , int l , int r , int color) {
int mid = (T[p].l + T[p].r) >> ;
if(T[p].l == l && T[p].r == r) {
T[p].sum = , T[p].lazy = T[p].rc = T[p].lc = color;
return ;
}
pushdown(p);
if(r <= mid) {
update(p << , l , r , color);
}
else if(l > mid) {
update((p << )| , l , r , color);
}
else {
update(p << , l , mid , color);
update((p << )| , mid + , r , color);
}
pushup(p);
} int query(int p , int l , int r) {
int mid = (T[p].l + T[p].r) >> ;
if(T[p].l == l && T[p].r == r) {
return T[p].sum;
}
pushdown(p);
if(r <= mid) {
return query(p << , l , r);
}
else if(l > mid) {
return query((p << )| , l , r);
}
else {
return query(p << , l , mid) + query((p << )| , mid + , r) - (T[p << ].rc == T[(p << )|].lc);
}
} int query_pos_color(int p , int pos) {
int mid = (T[p].l + T[p].r) >> ;
if(T[p].l == T[p].r && pos == T[p].r) {
return T[p].lc;
}
pushdown(p);
if(pos <= mid) {
query_pos_color(p << , pos);
}
else {
query_pos_color((p << )| , pos);
}
} void find_update(int u , int v , int val) {
int fu = top[u] , fv = top[v];
while(fu != fv) {
if(dep[fu] >= dep[fv]) {
update( , id[fu] , id[u] , val);
u = par[fu];
fu = top[u];
}
else {
update( , id[fv] , id[v] , val);
v = par[fv];
fv = top[v];
}
}
if(dep[u] > dep[v])
update( , id[v] , id[u] , val);
else
update( , id[u] , id[v] , val);
} int find_ans(int u , int v) {
int fu = top[u] , fv = top[v] , res = ;
while(fu != fv) {
if(dep[fu] >= dep[fv]) {
res += query( , id[fu] , id[u]);
if(query_pos_color( , id[fu]) == query_pos_color( , id[par[fu]])) //要是fu节点和其父节点颜色相同就-1
res--;
u = par[fu];
fu = top[u];
}
else {
res += query( , id[fv] , id[v]);
if(query_pos_color( , id[fv]) == query_pos_color( , id[par[fv]])) //上同
res--;
v = par[fv];
fv = top[v];
}
}
if(dep[u] > dep[v]) {
res += query( , id[v] , id[u]);
return res;
}
else {
res += query( , id[u] , id[v]);
return res;
}
} int main()
{
int n , m , u , v , val;
char q[];
while(~scanf("%d %d" , &n , &m)) {
init();
for(int i = ; i <= n ; ++i)
scanf("%d" , a + i);
for(int i = ; i < n ; ++i) {
scanf("%d %d" , &u , &v);
add(u , v);
add(v , u);
}
dfs1( , , );
dfs2( , , );
build( , , cnt);
while(m--) {
scanf("%s" , q);
if(q[] == 'Q') {
scanf("%d %d" , &u , &v);
printf("%d\n" , find_ans(u , v));
}
else {
scanf("%d %d %d" , &u , &v , &val);
find_update(u , v , val);
}
}
}
return ;
}
BZOJ 2243: [SDOI2011]染色 (树链剖分+线段树合并)的更多相关文章
- 2243: [SDOI2011]染色 树链剖分+线段树染色
给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如“112221”由3段组 ...
- bzoj2243[SDOI2011]染色 树链剖分+线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9012 Solved: 3375[Submit][Status ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- B20J_2243_[SDOI2011]染色_树链剖分+线段树
B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...
- BZOJ2243 [SDOI2011]染色(树链剖分+线段树合并)
题目链接 BZOJ2243 树链剖分 $+$ 线段树 线段树每个节点维护$lc$, $rc$, $s$ $lc$代表该区间的最左端的颜色,$rc$代表该区间的最右端的颜色 $s$代表该区间的所有连续颜 ...
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...
- bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)
4196: [Noi2015]软件包管理器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2852 Solved: 1668[Submit][Sta ...
- bzoj 2157: 旅游【树链剖分+线段树】
裸的树链剖分+线段树 但是要注意一个地方--我WA了好几次才发现取完相反数之后max值和min值是要交换的-- #include<iostream> #include<cstdio& ...
随机推荐
- apache启动报错(98)Address already in use: make_sock: could not bind to...
# /etc/init.d/httpd startStarting httpd: (98)Address already in use: make_sock: could not bind to ad ...
- JPA中的@MappedSuperclass
说明地址:http://docs.oracle.com/javaee/5/api/javax/persistence/MappedSuperclass.html 用来申明一个超类,继承这个类的子类映射 ...
- fil_space_create
/*******************************************************************//** Creates a space memory obje ...
- uva1349Optimal Bus Route Design
二分图最小权完美匹配. 一个最小费用流就能跑了,记住检查一下,容量是否跑满,如果没有跑满,就说明没有完美匹配. #include<cstdio> #include<algorithm ...
- Sass结合Modernizr的使用方法
Modernizr在初始化的时候会首先找寻class=“no-js”的元素: <!DOCTYPE html> <html class="no-js"> &l ...
- UVa 1349 (二分图最小权完美匹配) Optimal Bus Route Design
题意: 给出一个有向带权图,找到若干个圈,使得每个点恰好属于一个圈.而且这些圈所有边的权值之和最小. 分析: 每个点恰好属于一个有向圈 就等价于 每个点都有唯一后继. 所以把每个点i拆成两个点,Xi ...
- bzoj1797: [Ahoi2009]Mincut 最小割
最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...
- CCScrollView 实现帮助界面、关卡选择
本文出自[无间落叶]:http://blog.leafsoar.com/archives/2013/07-27.html 本文介绍了 CCScrollView 来编写帮助界面和关卡选择界面的方法,在编 ...
- 省常中模拟 Test2 Day2
two 模拟 大意:给你一个 N 位二进制数,有四种操作:加1.减1.乘2.整除2.给定一个操作序列,求最终结果.N <= 5*10^6.数据保证不会在最高位上进行进位或退位操作. 初步解法:由 ...
- mysql互为主从复制配置笔记
MySQL-master1:192.168.72.128 MySQL-master2:192.168.72.129 OS版本:CentOS 5.4MySQL版本:5.5.9(主从复制的master和s ...