A - Nearest Common Ancestors

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu

Submit Status

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2
and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node
8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the
last example, if y is an ancestor of z, then the nearest common ancestor
of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T)
is given in the first line of the input file. Each test case starts with
a line containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
【分析】这题就是求最近公共祖先,让我对Tarjan有了一个新的认识。先找到根节点,一直往下深搜,
找到子节点,若该节点就是要求的点且另一个点已经被访问过,则另一个点所在并查集的根节点即为最近公共祖先。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 1000000007
typedef long long ll;
using namespace std;
const int N = ;
int fa[N],node1,node2,ret;
bool root[N],visit[N];
vector<int>child[N];
int Find(int x)
{
if(x==fa[x]) return x;
return fa[x]=Find(fa[x]);
}
void Union(int x,int y)
{
x=Find(x); y=Find(y);
fa[y]=x;
}
void Tarjan(int root)
{
fa[root]=root;visit[root]=true;
for(int i=;i<child[root].size();i++)
{
Tarjan(child[root][i]);
Union(root,child[root][i]);
} if(root==node1&&visit[node2])
{
ret=fa[Find(node2)];
return ;
}
if(root==node2&&visit[node1])
{
ret=fa[Find(node1)];
return ;
}
}
int main()
{
int T,n,i;
scanf("%d",&T);
while(T--)
{
memset(visit,false,sizeof(visit));
scanf("%d",&n);
for(i=;i<=n;i++)
{
root[i]=true;
child[i].clear();
}
for(i=;i<=n-;i++)
{
int a,b;
scanf("%d%d",&a,&b);
child[a].push_back(b);
root[b]=false;//寻找root
}
scanf("%d%d",&node1,&node2);
for(i=;i<=n;i++)
if(root[i])
{
Tarjan(i);
break;
}
printf("%d\n",ret);
}
}

POJ1330 Nearest Common Ancestors(最近公共祖先)(tarjin)的更多相关文章

  1. 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18136   Accept ...

  2. POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题

    A rooted tree is a well-known data structure in computer science and engineering. An example is show ...

  3. POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)

    LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...

  4. POJ1330 Nearest Common Ancestors

      Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24587   Acce ...

  5. poj 1330 Nearest Common Ancestors 求最近祖先节点

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37386   Accept ...

  6. [POJ1330]Nearest Common Ancestors(LCA, 离线tarjan)

    题目链接:http://poj.org/problem?id=1330 题意就是求一组最近公共祖先,昨晚学了离线tarjan,今天来实现一下. 个人感觉tarjan算法是利用了dfs序和节点深度的关系 ...

  7. POJ1330Nearest Common Ancestors——近期公共祖先(离线Tarjan)

    http://poj.org/problem? id=1330 给一个有根树,一个查询节点(u,v)的近期公共祖先 836K 16MS #include<iostream> #includ ...

  8. POJ1330 Nearest Common Ancestors (JAVA)

    经典LCA操作.. 贴AC代码 import java.lang.reflect.Array; import java.util.*; public class POJ1330 { // 并查集部分 ...

  9. POJ1470Closest Common Ancestors 最近公共祖先LCA 的 离线算法 Tarjan

    该算法的详细解释请戳: http://www.cnblogs.com/Findxiaoxun/p/3428516.html #include<cstdio> #include<alg ...

随机推荐

  1. 【题解】NOIP2016愤怒的小鸟

    一眼n<=18状压dp……方程什么的都很显然,枚举两只小鸟,再将这条抛物线上的小鸟抓出来就好啦.只是这样O(n^3)的dp必然是要TLE的,我一开始这样交上去显然跑得巨慢无比,后来转念一想:面对 ...

  2. java.lang.NoClassDefFoundError: Lorg/apache/log4j/Logger报错

    java.lang.NoClassDefFoundError: Lorg/apache/log4j/Logger报错 错误提示: java.lang.NoClassDefFoundError: Lor ...

  3. HDU 5655 四边形判断

    CA Loves Stick Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) ...

  4. hdu 1520Anniversary party 树形dp入门

    There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The Un ...

  5. RGB颜色原理

    参考:http://www.cnblogs.com/harrytian/archive/2012/12/12/2814210.html 工作中经常和颜色打交道,但却从来没有从原理上了解一下,这篇文章希 ...

  6. bzoj 1045糖果传递 数学贪心

    首先我们假设平均数为ave 那么对于第1个人,我们假设他给第N个人K个糖果,第2个人给1,第3个人给2,第n个人给第n-1个人 那么对于第1个人给完n,第2个人给完1,第一个人不会再改变糖果数了,所以 ...

  7. windows启动redis服务

    参考:https://www.cnblogs.com/M-LittleBird/p/5902850.html 使用python的pip install redis以后还需要下载安装redis安装文件才 ...

  8. Google开源命令行参数解析库gflags

    Google开源命令行参数解析库gflags http://blog.csdn.net/lming_08/article/details/25072899 CMDLINE的解析 http://blog ...

  9. 【 Keepalived 】Nginx or Http 主-主模式

    上一篇:[ Keepalived ]Nginx or Http 主-备模式 在此基础上进行修改并实现 Keepalived主-主模式 首先,需要理解的是:主-备模式是一个VIP在工作,主-主模式则需要 ...

  10. [设计模式-行为型]访问者模式(Vistor)

    一句话 表示一个作用于某对象结构中的各元素的操作.它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作. 概括