【bzoj2115】[Wc2011] Xor
2115: [Wc2011] Xor
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 2512 Solved: 1049
[Submit][Status][Discuss]
Description

Input
第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。
Output
仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。
Sample Input
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2
Sample Output
dfs+线性基
解题报告:
继续刷线性基...
这道题要求从1到n的最大xor和路径,存在重边,允许经过重复点、重复边。那么在图上作图尝试之后就会发现,路径一定是由许多的环和一条从1到n的路径组成。容易发现,来回走是没有任何意义的,因为来回走意味着抵消。考虑这道题求得是路径xor和最大,所以必然我们要想办法处理环的情况。我的做法是任意地先找出一条从1到n的路径,把这条路径上的xor和作为ans初值(先不管为什么可行),然后我们的任务就变成了求若干个环与这个ans初值所能组合成的xor最大值。显然,我们需要预处理出图上所有的环,并处理出所有环的环上xor值,这当然是dfs寻找,到n的路径的时候顺便求一下就可以了。
当我们得到了若干个环的xor值之后,因为是要求xor最大值,我们就可以构出这所有xor值的线性基。构出之后,再用ans在线性基上取max就可以了。
现在我们来讨论上述做法的可行性。
第一种情况:我们对最终答案产生贡献的某个环离1到n的主路径很远,这样的话,因为至少可以保证1可以到达这个环,那么我们可以走到这个环之后绕环一周之后原路返回,这样从1走到环的路上这一段被重复经过所以无效,但是环上的xor值被我们得到了,所以我们并不关心这个环和主路径的关系,我们只关心环的权值。
第二种情况:我们任意选取的到n的路径是否能保证最优性。假设存在一条更优的路径从1到n,那么这条路径与我们原来的路径构成了一个环,也就会被纳入线性基中,也会被计算贡献,假如这个环会被经过,那么最后的情况相当于是走了两遍原来选取的路径,抵消之后走了一次这个最优路径,所以我们无论选取的是哪条路径作为ans初值,都可以通过与更优情况构成环,然后得到一样的结果。这一证明可以拓展到路径上的任意点的路径选取。
这样我们就可以完美解决了。我第一次WA了一发,因为我没有考虑到ans初值不为0,在线性基上取到xor的max的时候,不能单纯以ans这一位是否为0来决定是否异或上基的这一位,必须要看异或之后取一个max做一个判断才行。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAXM 200010
#define MAXN 50010
typedef long long ll;
struct node{ll y,next,v;}e[MAXM];
ll n,m,len,cnt,ans,Link[MAXN],vis[MAXN],cir[MAXM],p[MAXN],dx[MAXN];
inline ll read()
{
ll x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
void insert(ll x,ll y,ll v) {e[++len].next=Link[x];Link[x]=len;e[len].y=y;e[len].v=v;}
void dfs(ll x)
{
vis[x]=;
for(int i=Link[x];i;i=e[i].next)
{
if(!vis[e[i].y]) {dx[e[i].y]=dx[x]^e[i].v; dfs(e[i].y);}
else cir[++cnt]=dx[x]^dx[e[i].y]^e[i].v;
}
}
int main()
{
//freopen("cin.in","r",stdin);
//freopen("cout.out","w",stdout);
n=read(); m=read();
for(int i=;i<=m;i++)
{
ll x=read(),y=read(),v=read();
insert(x,y,v); insert(y,x,v);
}
dfs(); ans=dx[n];
for(int i=;i<=cnt;i++)
for(int j=;j>=;j--)
{
if(!(cir[i]>>j)) continue;
if(!p[j]) {p[j]=cir[i]; break;}
cir[i]^=p[j];
}
for(int i=;i>=;i--) if((ans^p[i])>ans) ans=ans^p[i];
printf("%lld\n",ans);
return ;
}
【bzoj2115】[Wc2011] Xor的更多相关文章
- 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS
[BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...
- 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基
题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...
- 【bzoj2115】[Wc2011] Xor【高斯消元】
题目大意:给出一个无向有权图,找出一条从1到n的路径,使得路径上权值的异或和最大,路径可以重复走 Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条 ...
- 【BZOJ2115】Xor(线性基)
[BZOJ2115]Xor(线性基) 题面 BZOJ Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si ...
- 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元
[BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...
- 【BZOJ4269】再见Xor 高斯消元
[BZOJ4269]再见Xor Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整 ...
- 【bzoj2115】【wc2011】Xor
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 5380 Solved: 2249[Submit][Status ...
- 【BZOJ-2115】Xor 线性基 + DFS
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2142 Solved: 893[Submit][Status] ...
- 【bzoj4296】再见Xor
4269: 再见Xor Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 176 Solved: 107[Submit][Status][Discuss ...
随机推荐
- 用php实现四种常见的排序算法
几种常见的排序 排序是一个程序员的基本功,对于初级phper,更是可以通过排序算法来锻炼自己的思维能力. 所谓排序,就是对一组数据,按照某个顺序排列的过程.下面就总结四种常用的php排序算法,分别是冒 ...
- 11.求二元查找树的镜像[MirrorOfBST]
[题目] 输入一颗二元查找树,将该树转换为它的镜像,即在转换后的二元查找树中,左子树的结点都大于右子树的结点.用递归和循环两种方法完成树的镜像转换. 例如输入: 8 / \ 6 1 ...
- python学习之函数和函数参数
#方法的参数定义和默认参数的定义 def ask_ok(prompt, retries=4, complaint='Yes or no, please!'): while True: ok = inp ...
- 剑指offer-第5章优化时间和空间效率(丑数)
题目:我们把只包含因子2,3,5的数叫做丑数.寻找第1500个丑数.通常把1当成第一个丑数. 思路1:第一步判断是否为丑数:丑数是只包含2,3,5的数,因此一定可以被2,3,5整除.通过求余数是否为零 ...
- Kernel,Shell,Bash 的关系
Kernel (内核) Kernel 操作系统内核 操作系统内核是指大多数操作系统的核心部分.它由操作系统中用于管理存储器.文件.外设和系统资源的那些部分组成.操作系统内核通常运行进程,并提供进程间的 ...
- FastAdmin 增删改查在哪里?
FastAdmin 增删改查在哪里? 一键生成 CRUD think crud -t test -u 1 执行命令合会在 controller 下生成 Test.php 控制器. 但是这个文件里确看不 ...
- python-mao
冒泡排序算法的运作如下: 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有的元素重复 ...
- MyBatis缓存结构
Mybatis Cache结构图: CacheKey(statementId, sql, sqlParams,other). 上图展示了Mybatis Cache的结构: 1)每个Mapper对应一块 ...
- gen_server模块
转自http://www.xuebuyuan.com/2132233.html
- python开发调用基础:模块的调用&制作包&软件开发规范
一,包的调用 #!/usr/bin/env python #_*_coding:utf-8_*_ #调用 glance[1..4]\api\policy.py 路径 # policy.py 内容 # ...