2115: [Wc2011] Xor

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 2512  Solved: 1049
[Submit][Status][Discuss]

Description

Input

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

Output

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

Sample Input

5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

Sample Output

6
 
 
 
【题解】

dfs+线性基

解题报告:

  继续刷线性基...

  这道题要求从1到n的最大xor和路径,存在重边,允许经过重复点、重复边。那么在图上作图尝试之后就会发现,路径一定是由许多的环和一条从1到n的路径组成。容易发现,来回走是没有任何意义的,因为来回走意味着抵消。考虑这道题求得是路径xor和最大,所以必然我们要想办法处理环的情况。我的做法是任意地先找出一条从1到n的路径,把这条路径上的xor和作为ans初值(先不管为什么可行),然后我们的任务就变成了求若干个环与这个ans初值所能组合成的xor最大值。显然,我们需要预处理出图上所有的环,并处理出所有环的环上xor值,这当然是dfs寻找,到n的路径的时候顺便求一下就可以了。

  当我们得到了若干个环的xor值之后,因为是要求xor最大值,我们就可以构出这所有xor值的线性基。构出之后,再用ans在线性基上取max就可以了。

  现在我们来讨论上述做法的可行性。

  第一种情况:我们对最终答案产生贡献的某个环离1到n的主路径很远,这样的话,因为至少可以保证1可以到达这个环,那么我们可以走到这个环之后绕环一周之后原路返回,这样从1走到环的路上这一段被重复经过所以无效,但是环上的xor值被我们得到了,所以我们并不关心这个环和主路径的关系,我们只关心环的权值。

  第二种情况:我们任意选取的到n的路径是否能保证最优性。假设存在一条更优的路径从1到n,那么这条路径与我们原来的路径构成了一个环,也就会被纳入线性基中,也会被计算贡献,假如这个环会被经过,那么最后的情况相当于是走了两遍原来选取的路径,抵消之后走了一次这个最优路径,所以我们无论选取的是哪条路径作为ans初值,都可以通过与更优情况构成环,然后得到一样的结果。这一证明可以拓展到路径上的任意点的路径选取。

  这样我们就可以完美解决了。我第一次WA了一发,因为我没有考虑到ans初值不为0,在线性基上取到xor的max的时候,不能单纯以ans这一位是否为0来决定是否异或上基的这一位,必须要看异或之后取一个max做一个判断才行。

————转载于 ljh_2000
 
温馨提示:circle[]大小一定要开成边的数量,因为这个wa了好多次。。。
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAXM 200010
#define MAXN 50010
typedef long long ll;
struct node{ll y,next,v;}e[MAXM];
ll n,m,len,cnt,ans,Link[MAXN],vis[MAXN],cir[MAXM],p[MAXN],dx[MAXN];
inline ll read()
{
ll x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
void insert(ll x,ll y,ll v) {e[++len].next=Link[x];Link[x]=len;e[len].y=y;e[len].v=v;}
void dfs(ll x)
{
vis[x]=;
for(int i=Link[x];i;i=e[i].next)
{
if(!vis[e[i].y]) {dx[e[i].y]=dx[x]^e[i].v; dfs(e[i].y);}
else cir[++cnt]=dx[x]^dx[e[i].y]^e[i].v;
}
}
int main()
{
//freopen("cin.in","r",stdin);
//freopen("cout.out","w",stdout);
n=read(); m=read();
for(int i=;i<=m;i++)
{
ll x=read(),y=read(),v=read();
insert(x,y,v); insert(y,x,v);
}
dfs(); ans=dx[n];
for(int i=;i<=cnt;i++)
for(int j=;j>=;j--)
{
if(!(cir[i]>>j)) continue;
if(!p[j]) {p[j]=cir[i]; break;}
cir[i]^=p[j];
}
for(int i=;i>=;i--) if((ans^p[i])>ans) ans=ans^p[i];
printf("%lld\n",ans);
return ;
}
 

【bzoj2115】[Wc2011] Xor的更多相关文章

  1. 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS

    [BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...

  2. 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基

    题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...

  3. 【bzoj2115】[Wc2011] Xor【高斯消元】

    题目大意:给出一个无向有权图,找出一条从1到n的路径,使得路径上权值的异或和最大,路径可以重复走 Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条 ...

  4. 【BZOJ2115】Xor(线性基)

    [BZOJ2115]Xor(线性基) 题面 BZOJ Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si ...

  5. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  6. 【BZOJ4269】再见Xor 高斯消元

    [BZOJ4269]再见Xor Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整 ...

  7. 【bzoj2115】【wc2011】Xor

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 5380  Solved: 2249[Submit][Status ...

  8. 【BZOJ-2115】Xor 线性基 + DFS

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status] ...

  9. 【bzoj4296】再见Xor

    4269: 再见Xor Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 176  Solved: 107[Submit][Status][Discuss ...

随机推荐

  1. vim 插件使用

    a.vim的安装相当简单,下载a.vim后丢进Vim插件目录(一般为~/.vim/plugin),必要时再重启一下Vim就可以使用了. 头/源文件切换命令 :A 头文件/源文件切换 :AS 分割窗后并 ...

  2. Python3 pyinotify 监视文件、文件夹修改

    /************************************************************************************ * Python3 pyin ...

  3. LUAROCKS 报错解决办法

    用luarocks 加载包时报错 Warning: falling back to curl - install luasec to get native HTTPS support 此时先安装 ./ ...

  4. C++中继承关系中的同名隐藏和对策

    在C++及其面向对象的理论中,有这样的场景:一个类继承自另外一个类,如果这两个类都有一个函数名和参数及其返回值一样的成员函数,那么子类的函数会自动将父类对应的函数隐藏.即同名隐藏.在有时的开发过程中, ...

  5. SpringMVC 过滤器Filter使用解析

    SpringMVC框架是一个成熟的优秀java web开发框架,学习研究框架设计有助于我们更好的理解和掌握spring MVC,设计和写出更符合的结构和代码. 本节主要是研读SpringMVC框架中的 ...

  6. VMware 10安装Mac OS X 10.11和XCode7

    上周把我的计算机当试验品,安装mac虚拟机.由于文件下载复制解压的时间花了很长,历时两天,记录下来(和我一样的新手不妨参考一下): 我机硬件:win7 64位 8G内存 没有8G以上就不要考虑了.我安 ...

  7. 时间js

    function DateUtil(){ this.url = ""; this.op={ partten:{mdy:"m/d/y",ymd:"y/m ...

  8. OpenCL™ 2.0 – Pipes

    copy from http://developer.amd.com/community/blog/2014/10/31/opencl-2-0-pipes/ OpenCL™ 2.0 – Pipes I ...

  9. npm笔记和bower

    生成package.json文件的方式就是dos下进入该文件夹,然后执行 npm init Bower简单点儿说就是通过nodejs直接下载GitHub上的js源码 首先你得有node,这里就不多做介 ...

  10. java 代码,练习ip,主机名的获取方法。InetAddress类

    package clientFrame; import java.io.IOException; import java.net.*; public class tai { public static ...