A square-free integer is an integer which is indivisible by any square number except 11. For example, 6 = 2 \cdot 36=2⋅3 is square-free, but 12 = 2^2 \cdot 312=22⋅3 is not, because 2^222 is a square number. Some integers could be decomposed into product of two square-free integers, there may be more than one decomposition ways. For example, 6 = 1\cdot 6=6 \cdot 1=2\cdot 3=3\cdot 2, n=ab6=1⋅6=6⋅1=2⋅3=3⋅2,n=ab and n=ban=ba are considered different if a \not = ba̸=b. f(n)f(n)is the number of decomposition ways that n=abn=ab such that aa and bb are square-free integers. The problem is calculating \sum_{i = 1}^nf(i)∑i=1n​f(i).

Input

The first line contains an integer T(T\le 20)T(T≤20), denoting the number of test cases.

For each test case, there first line has a integer n(n \le 2\cdot 10^7)n(n≤2⋅107).

Output

For each test case, print the answer \sum_{i = 1}^n f(i)∑i=1n​f(i).

Hint

\sum_{i = 1}^8 f(i)=f(1)+ \cdots +f(8)∑i=18​f(i)=f(1)+⋯+f(8)
=1+2+2+1+2+4+2+0=14=1+2+2+1+2+4+2+0=14.

样例输入

2
5
8

样例输出

8
14 思路:如果某个数字x拥有某一个素因子超过2个,则x的f值为0;若x的某个素因子数量为2个,则这个素因子不会对x的f值有任何的贡献;若x的某个素因子只有1个,则这个素因子贡献为2,举个例子:
60=2^2*3*5,则2没有贡献,3,5都贡献2,所以f(60)=2*2=4;
利用线性筛,每个合数只被它最小的素因子筛去,同时处理出这个数字的f值即可
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
#define INF 0x3f3f3f3f
typedef unsigned long long ll;
#define EPS 1e-5
const ll MOD = ;
const int N_MAX =*+;
bool is_prime[N_MAX];
int prime[N_MAX],p,f[N_MAX],sum[N_MAX],number;
void sieve(int n) {
is_prime[] = is_prime[] = true;
p = ; f[] = ;
for (int i = ; i < n;i++) {
if (!is_prime[i]) {
prime[p++] = i;
f[i] = ;
}
for (int j = ; j < p;j++) {
number = prime[j] * i;
if (number >= N_MAX)break;
is_prime[number] =true;
if (i%prime[j] != ) {
f[number] = f[i]<<;
}
else {
if (i % (prime[j] * prime[j]) == ) { f[number] = ; }
else f[number] = f[i] >> ;
break;//线性筛,保证每个数字只被最小的素数筛去
}
}
}
}
int main() {
sieve(N_MAX-); sum[] = ;
for (int i = ; i < N_MAX - ; i++) {
sum[i] = sum[i - ] + f[i];
}
int t; scanf("%d",&t);
while (t--) {
int n; scanf("%d",&n);
printf("%d\n",sum[n]);
}
return ;
}

ACM-ICPC 2018 南京赛区网络预赛 Sum的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛Sum,线性筛处理积性函数

    SUM 题意:f(n)是n可以拆成多少组n=a*b,a和b都是不包含平方因子的方案数目,对于a!=b,n=a*b和n=b*a算两种方案,求∑i=1nf(i) 首先我们可以知道,n=1时f(1)=1, ...

  2. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  3. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  4. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  5. ACM-ICPC 2018 南京赛区网络预赛

    轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K   Alice, a student of g ...

  6. ACM-ICPC 2018 南京赛区网络预赛(12/12)

    ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem 计算\(\sum_{i=1}^{n-1}i\cdot i!(MOD\ n)\) \(\sum_{i ...

  7. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  8. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  9. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

随机推荐

  1. 今天买了个pro,开始ios开发

    今天买了个mac pro 开始ios开发啦,爽!

  2. Qt 蓝牙部分翻译

    这是我第一次尝试翻译技术文档,自己英语太烂,一直不敢尝试,感谢生活,让我勇敢迈出这第一步. 大部分都是直译,如有不妥,还请制导. Qt Bluetooth The Bluetooth API prov ...

  3. MySQL☞between ... and ...

    between  初值  and  终值:求出该列列值在初值和终值之间所有的数据 格式如下: select 列名/* from 表名 where 列名 between 初值 and 终值 如下图:

  4. 去西交大考PAT认证

    这周六去了西交大去考浙大PAT认证,为什么要写这个博客呢.因为...我不是西交大的学生,找考场就花了我很多时间,各种搜都找不到PAT的考场在哪. 在此记录一下,希望有有缘人再去西交大考试,可以少走点弯 ...

  5. [转]Hibernate入门:批量插入数据

    转自:http://blog.csdn.net/xiazdong/article/details/7709068 一般如果要插入100万条数据,则会写如下代码: package org.xiazdon ...

  6. Python 异步编程笔记:asyncio

    个人笔记,不保证正确. 虽然说看到很多人不看好 asyncio,但是这个东西还是必须学的.. 基于协程的异步,在很多语言中都有,学会了 Python 的,就一通百通. 一.生成器 generator ...

  7. BZOJ 4408 FJOI2016 神秘数 可持久化线段树

    Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...

  8. org.json.Json Object的put和append方法比较

    json.append(key,value) 会把 value 包装成一个数组 JSONObject append = new JSONObject().append("a", & ...

  9. c++单例模式代码分析

    单例模式就是一个C++语法精华浓缩的一个体现,有句老话:麻雀虽小五脏俱全!来形容单例非常贴切! 下面的代码分析了如果自己malloc并且memcpy一个单例指针会带来很大危害并如何防止这种情况发生. ...

  10. vue-component=>v-on

    $emit 返回 shouldPropagate,shouldPropagate 是一个布尔值,取决于父链上的是否存在该事件的监听器以及,事件处理程序返回的值.他决定 $dispatch 是否停止冒泡 ...