poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 27496 | Accepted: 11059 |
Description
popular, even if this is not explicitly specified by an ordered pair
in the input. Your task is to compute the number of cows that are
considered popular by every other cow.
Input
* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.
Output
Sample Input
3 3
1 2
2 1
2 3
Sample Output
1
Hint
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#define N 10000+10
#define M 51000+10 using namespace std;
int n, m;
struct node
{
int to;
int next;
}edge[M];//保证存下所有的边 int head[N], dfn[N], low[N], vis[N];
int stack[N], num[N], du[N];
int counter, top, cut, cnt;
/*
dfn[]:记录搜索时各顶点的访问次序,即深度优先数
low[u]:每个节点定义一个low值 low[u]是从u或u的子孙出发通过回边可以到达
的最低深度优先数
注意:dfn[]在搜索前进时进行统计 low[]值是在回退的时候进行计算
du[]:表示出度
*/
void init()
{
memset(head, -1, sizeof(head));
memset(vis, 0, sizeof(vis));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(num, 0, sizeof(num));
memset(du, 0, sizeof(du));
counter=1;//begin 1
cnt=0;//边 计数
top=0;// stack top
cut=0;
} void addedge(int u, int v)
{
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}//静态数组 倒着建边 void dfs(int u)
{
dfn[u]=low[u]=counter++;//counter的值从1开始
vis[u]=1;//标记访问
stack[top++]=u;
//遍历从u节点发出的边
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].to;
if(!vis[v]){//这是一条树边
dfs(v);
low[u]=min(low[u], low[v]);//回溯的时候比较
}
else if(vis[v]){
low[u]=min(low[u], dfn[v]);
}
}
if(low[u]==dfn[u]){
cut++;//表示已经找到了一个强连通分量
while(top>0 && stack[top]!=u){
top--;
vis[stack[top]]=2;//
num[stack[top]]=cut;//确定当前这个节点属于哪个强连通分量
}
}
} int main()
{
int i, j;
while(scanf("%d %d", &n, &m)!=EOF)
{
init();//进行初始化
int u, v;
for(i=1; i<=m; i++){
scanf("%d %d", &u, &v);
addedge(u, v);
}//建立单向边 for(i=1; i<=n; i++){
if(!vis[i]){
dfs(i);
}
}//不知道为什么在此处计数一下连通分量的数目 如果大于1 直接输出0 这样提交 会WA。不写就对 for(i=1; i<=n; i++){
for(j=head[i]; j!=-1; j=edge[j].next){
int v=edge[j].to;
if(num[i]!=num[v])//如果连通分量的编号不等
du[num[i]]++;//出度++
}
}
int pos; int dd=0;
for(i=1; i<=cut; i++){
if(du[i]==0){
dd++; pos=i;
}
}
//printf("pos = %d\n", pos);
if(dd==1){
int ans=0;
for(i=1; i<=n; i++){
if(num[i]==pos)
ans++;
}
printf("%d\n", ans );
}
else printf("0\n");
}
return 0;
}
使用STL-stack模拟的,注意在栈弹出节点的地方的写法,在循环跳出之后再弹出一次,因为遇到u==v的时候就跳出了,而u没有被弹出。
上面的数组模拟的stack操作也可以再修改一下。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stack>
#include <algorithm>
#define N 10000+10
#define M 51000+10 using namespace std;
int n, m;
struct node
{
int to;
int next;
}edge[M];//保证存下所有的边 int head[N], dfn[N], low[N], vis[N];
int num[N], du[N];
int counter, top, cut, cnt;
/*
dfn[]:记录搜索时各顶点的访问次序,即深度优先数
low[u]:每个节点定义一个low值 low[u]是从u或u的子孙出发通过回边可以到达
的最低深度优先数
注意:dfn[]在搜索前进时进行统计 low[]值是在回退的时候进行计算
du[]:表示出度
*/
stack<int>q;
void init()
{
memset(head, -1, sizeof(head));
memset(vis, 0, sizeof(vis));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(num, 0, sizeof(num));
memset(du, 0, sizeof(du));
counter=1;//begin 1
cnt=0;//边 计数
top=0;// stack top
cut=0;
} void addedge(int u, int v)
{
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}//静态数组 倒着建边 void dfs(int u)
{
dfn[u]=low[u]=counter++;//counter的值从1开始
vis[u]=1;//标记访问
q.push(u);
//遍历从u节点发出的边
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].to;
if(!vis[v]){//这是一条树边
dfs(v);
low[u]=min(low[u], low[v]);//回溯的时候比较
}
else if(vis[v]){
low[u]=min(low[u], dfn[v]);
}
}
if(low[u]==dfn[u]){
cut++;//表示已经找到了一个强连通分量
while(!q.empty() && q.top()!=u){
vis[q.top()]=2;//
num[q.top()]=cut;//确定当前这个节点属于哪个强连通分量
q.pop();
}
vis[q.top()]=2;//
num[q.top()]=cut;//确定当前这个节点属于哪个强连通分量
q.pop(); //还要将u节点弹出
}
} int main()
{
int i, j;
while(scanf("%d %d", &n, &m)!=EOF)
{
init();//进行初始化
int u, v;
for(i=1; i<=m; i++){
scanf("%d %d", &u, &v);
addedge(u, v);
}//建立单向边 int cur=0;
for(i=1; i<=n; i++){
if(!vis[i]){
dfs(i); cur++;
}
} for(i=1; i<=n; i++){
for(j=head[i]; j!=-1; j=edge[j].next){
int v=edge[j].to;
if(num[i]!=num[v])//如果连通分量的编号不等
du[num[i]]++;//出度++
}
}
int pos; int dd=0;
for(i=1; i<=cut; i++){
if(du[i]==0){
dd++; pos=i;
}
}
if(dd==1){
int ans=0;
for(i=1; i<=n; i++){
if(num[i]==pos)
ans++;
}
printf("%d\n", ans );
}
else printf("0\n");
}
return 0;
}
poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】的更多相关文章
- poj 2186 Popular Cows (强连通分量+缩点)
http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissi ...
- POJ 2186 Popular Cows(强连通分量缩点)
题目链接:http://poj.org/problem?id=2186 题目意思大概是:给定N(N<=10000)个点和M(M<=50000)条有向边,求有多少个“受欢迎的点”.所谓的“受 ...
- POJ 2186 Popular Cows --强连通分量
题意:给定一个有向图,问有多少个点由任意顶点出发都能达到. 分析:首先,在一个有向无环图中,能被所有点达到点,出度一定是0. 先求出所有的强连通分支,然后把每个强连通分支收缩成一个点,重新建图,这样, ...
- POJ 2186 Popular Cows 强连通分量模板
题意 强连通分量,找独立的块 强连通分量裸题 #include <cstdio> #include <cstdlib> #include <cstring> #in ...
- POJ2186 Popular Cows 强连通分量tarjan
做这题主要是为了学习一下tarjan的强连通分量,因为包括桥,双连通分量,强连通分量很多的求法其实都可以源于tarjan的这种方法,通过一个low,pre数组求出来. 题意:给你许多的A->B ...
- 强连通分量分解 Kosaraju算法 (poj 2186 Popular Cows)
poj 2186 Popular Cows 题意: 有N头牛, 给出M对关系, 如(1,2)代表1欢迎2, 关系是单向的且能够传递, 即1欢迎2不代表2欢迎1, 可是假设2也欢迎3那么1也欢迎3. 求 ...
- tarjan缩点练习 洛谷P3387 【模板】缩点+poj 2186 Popular Cows
缩点练习 洛谷 P3387 [模板]缩点 缩点 解题思路: 都说是模板了...先缩点把有环图转换成DAG 然后拓扑排序即可 #include <bits/stdc++.h> using n ...
- POJ 2186 Popular Cows (强联通)
id=2186">http://poj.org/problem? id=2186 Popular Cows Time Limit: 2000MS Memory Limit: 655 ...
- 有向图强连通分量Tarjan算法
在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...
随机推荐
- LINUX手动查看和修改MTU值的方法
默认的ANDROID系统中不带BUSYBOX,所以无法用BUSYBOX IFCONFIG来查看修改MTU值.其实网卡的MTU值是保存在/sys/class/net/eth0/mtu文件中,所以可以通过 ...
- selenium-webdriver 中执行js代码
#获取标签的text文本值 js1="return document.getElementById('key1').innerText" dr.execute_script(js1 ...
- bootstrap获取总条目数
$('#table').on('load-success.bs.table', function () {alert($('#table').bootstrapTable('getOptions'). ...
- 学习 Tornado
异步编程 预习 lambda Lambda functions can be used wherever function objects are required. They are syntact ...
- 类 Stack<E>
Stack类 Stack 类表示后进先出(LIFO)的对象堆栈.它通过五个操作对类 Vector 进行了扩展 ,允许将向量视为堆栈. 它提供了通常的 push 和 pop 操作,以及取堆栈顶点的 pe ...
- C# 自定义控件摘记
C# 自定义控件属性 现有自定义控件,内有一textbox控件 TextBox1.控件有一属性 Value 定义为 [BrowsableAttribute(true)] [BindableAttrib ...
- SqlProfiler的替代品-ExpressProfiler
可以用来跟踪执行的sql语句.安装SqlServer之后SqlServerManagementStudio自带一个SqlProfiler,但是如果安装的SqlExpress,那就没有了. 项目的主页在 ...
- Django 模板系统(template)
介绍 官方文档 常用模板语法 只需要记两种特殊符号: {{ }} 和 {% %} 变量相关的用{{}} 逻辑相关的用{%%} 变量 {{ 变量名 }} 变量名由字母数字和下划线组成. 点(.)在模 ...
- python通过数据库连接池实现mysql数据库增删改查
import pymysql from DBUtils.PooledDB import PooledDB class SQLHandler(object): def __init__(self, ho ...
- Python3.6全栈开发实例[011]
11.元素分类有如下值li= [11,22,33,44,55,66,77,88,99,90],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中.即: {'k ...