Problem Statement

You are participating in a quiz with N+M questions and Yes/No answers.

It's known in advance that there are N questions with answer Yes and M questions with answer No, but the questions are given to you in random order.

You have no idea about correct answers to any of the questions. You answer questions one by one, and for each question you answer, you get to know the correct answer immediately after answering.

Suppose you follow a strategy maximizing the expected number of correct answers you give.

Let this expected number be PQ, an irreducible fraction. Let M=998244353. It can be proven that a unique integer R between 0 and M−1 exists such that P=Q×R modulo M, and it is equal to P×Q−1 modulo M, where Q−1 is the modular inverse of Q. Find R.

Constraints

  • 1≤N,M≤500,000
  • Both N and M are integers.

Partial Score

  • 1500 points will be awarded for passing the testset satisfying N=M and 1≤N,M≤105.

Input

Input is given from Standard Input in the following format:

N M

Output

Let PQ be the expected number of correct answers you give if you follow an optimal strategy, represented as an irreducible fraction. Print P×Q−1 modulo 998244353.

Sample Input 1

1 1

Sample Output 1

499122178

There are two questions. You may answer randomly to the first question, and you'll succeed with 50% probability. Then, since you know the second answer is different from the first one, you'll succeed with 100% probability.

The expected number of your correct answers is 3 / 2. Thus, P=3Q=2Q−1=499122177 (modulo 998244353), and P×Q−1=499122178 (again, modulo 998244353).

Sample Input 2

2 2

Sample Output 2

831870297

The expected number of your correct answers is 17 / 6.

Sample Input 3

3 4

Sample Output 3

770074220

The expected number of your correct answers is 169 / 35.

Sample Input 4

10 10

Sample Output 4

208827570

Sample Input 5

42 23

Sample Output 5

362936761

    wjz神犇省队集训的时候讲的神题!太笨了当时没有听懂,后来看了看课件懂QWQ
首先贪心策略比较显然,就是先选目前剩的多的类型。。
(先假设 n>=m 也就是 Yes > No)
然后选硬币就相当于在二维平面上行走,起点是(n,m),重点是(0,0),每次向左走代表选Yes,向下走代表选No。
当目前位置在 y=x 上方的时候,向下走会有1的贡献。
当目前位置的 y=x 下方的时候,向左走会有1的贡献。
当目前在 y=x 上的时候,怎么走都会有 1/2 的贡献(期望贡献) 所以我们就可以把在y=x和不在的贡献分开算。。。。
可以发现不在y=x的点的期望贡献总是n,因为当我们把y=x上方的路径对称下来的时候,可以发现不管怎么走,最后都一共向左走了n步。。 然后在y=x上的点的贡献就可以用期望的线性性拆开算了,对于每个点单独算经过它的概率,然后求和即可。
总的Yes/No 排列的种类显然是 C(n+m,n) 的,经过点(i,i) 的方案数则是 C(i*2,i) * C(n+m-i*2,n-i)的。
/*

*/
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1000000,ha=998244353;
inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;} inline int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha;
return an;
} int jc[maxn+5],ni[maxn+5],n,m,ans; inline int C(int x,int y){ return x<y?0:jc[x]*(ll)ni[y]%ha*(ll)ni[x-y]%ha;} inline void init(){
jc[0]=1;
for(int i=1;i<=maxn;i++) jc[i]=jc[i-1]*(ll)i%ha;
ni[maxn]=ksm(jc[maxn],ha-2);
for(int i=maxn;i;i--) ni[i-1]=ni[i]*(ll)i%ha;
} inline void solve(){
for(int i=1;i<=m;i++)
ADD(ans,C(i<<1,i)*(ll)C(n+m-i*2,n-i)%ha); } int main(){
init(); scanf("%d%d",&n,&m);
if(n<m) swap(n,m); solve(); ans=ans*(ll)ni[2]%ha*(ll)ksm(C(n+m,n),ha-2)%ha; ADD(ans,n);
printf("%d\n",ans);
return 0;
}

  

 

AtCoder - 2705 Yes or No的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  2. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  3. Dividing a Chocolate(zoj 2705)

    Dividing a Chocolate zoj 2705 递推,找规律的题目: 具体思路见:http://blog.csdn.net/u010770930/article/details/97693 ...

  4. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  5. 【BZOJ】【2705】【SDOI2012】Longge的问题

    欧拉函数/狄利克雷卷积/积性函数 2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1275  Solv ...

  6. AtCoder Grand Contest 001 C Shorten Diameter 树的直径知识

    链接:http://agc001.contest.atcoder.jp/tasks/agc001_c 题解(官方): We use the following well-known fact abou ...

  7. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  8. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  9. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

随机推荐

  1. 12.25模拟赛T3

    可以发现,答案O(根号)(因为链上答案最大,n/2,n/3...根号种) 每次求答案要二分 优秀的做法是: 对于小于根号n的暴力nlogn找,可能二分到同一个mid,记忆化一下最小的tot值 对于大于 ...

  2. Java的Properties使用及格式定义

    java.util.Properties extends Hashtable<Object,Object> 方便读取 键值对 格式的文本资源工具 常用方法一览 初始化对象 new Prop ...

  3. Mybatis LIKE模糊查询

    1.在代码中拼接好字符串后传入进来 2.使用CONCAT在xml中拼接字符串: <if test="queryParam.keyword != null"> AND b ...

  4. HDU 多校对抗赛 C Triangle Partition

    Triangle Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Oth ...

  5. im4java学习----查看文档和test用例

    im4java下载地址:http://sourceforge.net/projects/im4java/files/(谷歌搜索出来的第一个官方地址打不开) 我们需要下载bin和src 这2个压缩包. ...

  6. spring结合Mybatis的框架搭建(一)

    一:前沿 2015年新年上班的第二天,第一天就打了一天的酱油哦,只是下午开始搭建自己毕业设计的框架,搭建的是spring+spring mvc+MyBatis的框架.今天遇到了一个问题,结果弄了我一天 ...

  7. DOM读取和修改节点对象属性

    一.获取和修改元素间的内容(3种) 1.innerHTML 获得/设置元素开始标签和结束标签之间的html原文 固定套路:1.删除父元素下所有子元素:parent.innerHTML="&q ...

  8. 计算n阶行列式的模板

    之前在学习计数问题的时候也在网上找了很多关于行列式的资料 但是发现很多地方都只介绍2\3阶的情况 一些论文介绍的方法又看不懂 然后就一直耽搁着 今天恰好出到这样的题目 发现标算的代码简介明了 还挺开心 ...

  9. [bzoj3223]文艺平衡树——splay

    题意 你应当编写一个数据结构,支持以下操作: 反转一个区间 题解 我们把在数组中的位置当作权值,这样原序列就在这种权值意义下有序,我们考虑使用splay维护. 对于操作rev[l,r],我们首先把l- ...

  10. bzoj 1834

    网络流的模板题 首先第一问我们直接用dinic搞就行了,费用直接存为0(时间上界非常松,这道题是能过),然后第二问我们只需要在第一问 的残余网络上加一个源点,源点指向1号点,容量为k,费用为0,然后对 ...