[BZOJ 3157] 国王奇遇记
Link:
Solution:
题意:求解$\sum_{i=1}^n m^i \cdot {i^m}$
$O(m^2)$做法:
定义一个函数$f[i]$,$f[i]=\sum_{i=1}^n k^i \cdot {m^k}$
$(m-1)\cdot f(i)=\sum_{k=1}^n k^i \cdot m^{k + 1} - \sum_{k=1}^n k^i \cdot m^k$
$= \sum_{k=1}^{n+1} (k - 1)^i\cdot m^k - \sum_{k=1}^n k^i \cdot m^k $
$= n^i \cdot m^{n + 1} + \sum_{k=1}^n m^k \sum_{j = 0}^{i - 1} {i \choose j} \cdot (-1)^{i - j} \cdot k^j $
$= n^i \cdot m^{n + 1} + \sum_{j = 0}^{i - 1} {i \choose j} \cdot (-1)^{i - j} \sum_{k = 1}^n k^j \cdot m^k $
$= n^i \cdot m^{n + 1} + \sum_{j = 0}^{i - 1} {i \choose j} \cdot (-1)^{i - j} \cdot f(j) $
接下来只要预处理$C_i^j$,递推即可
Code:
#include <bits/stdc++.h> using namespace std;
typedef long long ll;
const int MAXN=1e3+;
const int MOD=1e9+; ll C[MAXN][MAXN],f[MAXN],n,m,pre,dvs; ll quick_pow(ll a,ll b)
{
ll base=a,res=;
while(b)
{
if(b&) res=(res*base)%MOD;
b>>=;base=base*base%MOD;
}
return res;
} int main()
{
scanf("%lld%lld",&n,&m);
if(m==){printf("%lld",n*(n+)/%MOD);return ;} pre=quick_pow(m,n+);dvs=quick_pow(m-,MOD-);
C[][]=;
for(int i=;i<=m;i++)
{
C[i][]=;
for(int j=;j<=i;j++) C[i][j]=(C[i-][j]+C[i-][j-])%MOD;
} f[]=(pre-m+MOD)%MOD;(f[]*=dvs)%=MOD;
for(int i=;i<=m;i++)
{
pre=pre*n%MOD;f[i]=pre;
for(int j=;j<i;j++)
{
ll mark=((i-j)&)?-:;
(f[i]+=mark*C[i][j]*f[j]%MOD)%=MOD;
}
(f[i]+=MOD)%=MOD;(f[i]*=dvs)%=MOD;
}
printf("%lld",f[m]);
return ;
}
Review:
此题的加强版:BZOJ 3516/BZOJ 4126
最后一题要用到$O(m)$的算法,然而我并不能看懂
Resources:
http://blog.miskcoo.com/2014/06/bzoj-3157
http://blog.miskcoo.com/2015/08/special-polynomial-linear-interpolation
http://trinkle.blog.uoj.ac/blog/478
杜教论文:http://www.docin.com/p-638538589.html
也许先补一补多项式定理再多看看具体数学没有公式密集恐惧症了就能看懂了?
[BZOJ 3157] 国王奇遇记的更多相关文章
- BZOJ 3157: 国王奇遇记 (数学)
题面:BZOJ3157 一句话题意: 求: \[ \sum_{i=1}^ni^m\ \times m^i\ (mod\ 1e9+7)\ \ (n \leq 1e9,m\leq200)\] 题解 令 \ ...
- bzoj 3157 && bzoj 3516 国王奇遇记——推式子
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...
- bzoj 3157 & bzoj 3516 国王奇遇记 —— 推式子
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...
- 3157: 国王奇遇记 & 3516: 国王奇遇记加强版 - BZOJ
果然我数学不行啊,题解君: http://www.cnblogs.com/zhuohan123/p/3726933.html const h=; var fac,facinv,powm,s:..]of ...
- BZOJ 3516 国王奇遇记加强版(乱推)
题意 求\(\sum_{k=1}^{n}k^mm^k (n\leq1e9,m\leq1e3)\) 思路 在<>中有一个方法用来求和,称为摄动法. 我们考虑用摄动法来求这个和式,看能不能得到 ...
- 【BZOJ】【3157】&【BZOJ】【3516】国王奇遇记
数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有 ...
- bzoj3157国王奇遇记(秦九韶算法+矩乘)&&bzoj233AC达成
bz第233题,用一种233333333的做法过掉了(为啥我YY出一个算法来就是全网最慢的啊...) 题意:求sigma{(i^m)*(m^i),1<=i<=n},n<=10^9,m ...
- 【BZOJ3157/3516】国王奇遇记(数论)
[BZOJ3157/3516]国王奇遇记(数论) 题面 BZOJ3157 BZOJ3516 题解 先考虑怎么做\(m\le 100\)的情况. 令\(f(n,k)=\displaystyle \sum ...
- bzoj3157: 国王奇遇记
emmm...... 直接看题解好了: BZOJ-3157. 国王奇遇记 – Miskcoo's Space O(m)不懂扔掉 总之,给我们另一个处理复杂求和的方法: 找到函数之间的递推公式! 这里用 ...
随机推荐
- 【BZOJ 4565】 [Haoi2016]字符合并 区间dp+状压
考试的时候由于总是搞这道题导致爆零~~~~~(神™倒序难度.....) 考试的时候想着想着想用状压,但是觉得不行又想用区间dp,然而正解是状压着搞区间,这充分说明了一件事,状压不是只是一种dp而是一种 ...
- HDU3605:Escape(状态压缩+最大流)
Escape Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- ubuntu安装GraphicsMagick
一. sudo apt-get install graphicsmagick 二. http://www.cnblogs.com/cocowool/archive/2010/08/16/1800954 ...
- bzoj4900 [CTSC2017]密钥
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4900 [题解] 恭喜bzoj达到40页 考场由于傻逼基数排序写挂了而gg. 竟然忘了考试前一 ...
- 应对ubuntu linux图形界面卡住的方法
有的时候,我的ubuntu图形界面会卡住,当然这个时候你可以重新启动,不过最好的办法应该是结束这个桌面进程 那桌面卡住了怎么来结束桌面进程呢? 这时候就需要打开tty了 按下键盘ctrl+alt+f1 ...
- linux下使用wget下载整个网站
linux下可以用wget下载整个网站,而且网站链接中包含utf-8编码的中文也能正确处理. 简要方法记录如下: wget --restrict-file-name=ascii -m -c -nv - ...
- C++异常~二 转
Linux 下 C++ 异常处理技巧 处理固有语言局限性的四种技术 处理 C++ 中的异常会在语言级别上遇到少许隐含限制,但在某些情况下,您可以绕过它们.学习各种利用异常的方法,您就可以生产更可靠的应 ...
- HDU3910(数学期望题,题目难懂)
Liang Guo Sha Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- libssh2
http://www.cnblogs.com/lzrabbit/p/4298794.html shell脚本实现ssh自动登录远程服务器示例: #!/usr/bin/expect spawn ssh ...
- Chubby lock service for distributed system
Chubby lock service在分布式系统中的应用 Chubby lock service在分布式系统中提供粗粒度的锁服务, 以及可靠的存储. 相比高性能, 设计的重点在于高可靠性和高可用性. ...