差分约束系统讲解看这里:http://blog.csdn.net/xuezhongfenfei/article/details/8685313

模板题,不多说。要注意的一点是!!!对于带有within的语句,要建立两个不等式!!!x要在y开始的z分钟内开始的话,x<=y+z 并且 x>=y。别忘了。

spfa判负权回路。

In most recipes, certain tasks have to be done before others. For each task, if we are given a list of other tasks that it depends on, then it is relatively straightforward to come up with a schedule of tasks that satisfies the dependencies and produces a stunning dish. Many of us know that this can be solved by some algorithm called toplogical sort.

But life is not so easy sometimes. For example, here is a recipe for making pizza dough:

  1. Mix the yeast with warm water, wait for 5 to 10 minutes.
  2. Mix the the remaining ingredients 7 to 9 minutes.
  3. Mix the yeast and the remaining ingredients together for 10 to 15 minutes.
  4. Wait 90 to 120 minutes for the dough to rise.
  5. Punch the dough and let it rest for 10 to 15 minutes.
  6. Roll the dough.

In this case, tasks 1 and 2 may be scheduled after the first minute (we always spend the first minute to read the recipe and come up with a plan). The earliest task 3 may be started is at 8 minutes, and task 4 may start at 18 minutes after the start, and so on. This recipe is relatively simple, but if some tasks have many dependent tasks then scheduling can become unmanageable. Sometimes, the recipe may in fact be impossible to execute. For example, consider the following abstract recipe:

  1. task 1
  2. after task 1 but within 2 minutes of it, do task 2
  3. at least 3 minutes after task 2 but within 2 minutes of task 1, do task 3

In this problem, you are given a number of tasks. Some tasks are related to another based on their starting times. You are asked to assign a starting time to each task to satisfy all constraints if possible, or report that no valid schedule is possible.

Input

The input consists of a number of cases. The first line of each case gives the number of tasks n, (1 ≤ n ≤ 100). This is followed by a line containing a non-negative integer m giving the number of constraints. Each of the next mlines specify a constraint. The two possible forms of constraints are:

task i starts at least A minutes later than task j
task i starts within A minutes of the starting time of task j

where i and j are the task numbers of two different tasks (1 ≤ i, j ≤ n), and A is a non-negative integer (A ≤ 150). The first form states that task imust start at least A minutes later than the start time of task j. The second form states that task i must start no earlier than task j, and within Aminutes of the starting time of task j. There may be multiple constraints involving the same pair of tasks. Note that at least and within include the end points (i.e. if task 1 starts at 1 minute and task 2 starts at 4 minutes, then task 2 starts at least 3 minutes later than task 1, and within 3 minutes of the starting time of task 1).

The input is terminated by n = 0.

Output

For each case, output a single line containing the starting times of task 1 through task n separated by a single space. Each starting time should specify the minute at which the task starts. The starting time of each task should be positive and less than 1000000. There may be many possible schedules, and any valid schedule will be accepted. If no valid schedule is possible, print Impossible. on a line instead.

Sample input

6
10
task 3 starts at least 5 minutes later than task 1
task 3 starts within 10 minutes of the starting time of task 1
task 3 starts at least 7 minutes later than task 2
task 3 starts within 9 minutes of the starting time of task 2
task 4 starts at least 10 minutes later than task 3
task 4 starts within 15 minutes of the starting time of task 3
task 5 starts at least 90 minutes later than task 4
task 5 starts within 120 minutes of the starting time of task 4
task 6 starts at least 10 minutes later than task 5
task 6 starts within 15 minutes of the starting time of task 5
3
4
task 2 starts at least 0 minutes later than task 1
task 2 starts within 2 minutes of the starting time of task 1
task 3 starts at least 3 minutes later than task 2
task 3 starts within 2 minutes of the starting time of task 1
0

Sample Output

3 1 8 18 108 118
Impossible.
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
int v[100010],first[110],w[100010],__next[100010],e;
void AddEdge(int U,int V,int W)
{
v[++e]=V;
w[e]=W;
__next[e]=first[U];
first[U]=e;
}
//struct Point
//{
// int d,u;
// Point(const int &X,const int &Y){d=X;u=Y;}
// Point(){}
//};
int n,m;
queue<int>q;
int dis[110],cnts[110];
bool inq[110];
bool spfa(const int &s)
{
memset(inq,0,sizeof(inq));
memset(cnts,0,sizeof(cnts));
while(!q.empty())
q.pop();
for(int i=1;i<=n+1;++i)
dis[i]=1000000007;
dis[s]=0; q.push(s); inq[s]=1; ++cnts[s];
while(!q.empty())
{
int U=q.front();
for(int i=first[U];i;i=__next[i])
if(dis[v[i]]>dis[U]+w[i])
{
dis[v[i]]=dis[U]+w[i];
if(!inq[v[i]])
{
q.push(v[i]);
inq[v[i]]=1;
++cnts[v[i]];
if(cnts[v[i]]>n+1)
return 0;
}
}
q.pop(); inq[U]=0;
}
return 1;
}
int main()
{
char op[12],s[12];
int x,y,z;
while(1)
{
scanf("%d",&n);
if(!n)
break;
scanf("%d",&m);
e=0;
memset(first,0,sizeof(first));
memset(__next,0,sizeof(__next));
memset(v,0,sizeof(v));
memset(w,0,sizeof(w));
for(int i=1;i<=m;++i)
{
scanf("%s",op);
scanf("%d",&x);
scanf("%s",op);
scanf("%s",op);
if(op[0]=='a')
{
scanf("%s",op);
scanf("%d",&z);
scanf("%s",op);
scanf("%s",op);
scanf("%s",op);
scanf("%s",op);
scanf("%d",&y);
AddEdge(x,y,-z);
}
else
{
scanf("%d",&z);
scanf("%s",op);
scanf("%s",op);
scanf("%s",op);
scanf("%s",op);
scanf("%s",op);
scanf("%s",op);
scanf("%s",op);
scanf("%d",&y);
AddEdge(y,x,z);
AddEdge(x,y,0);
}
}
for(int i=1;i<=n;++i)
AddEdge(n+1,i,0);
if(spfa(n+1))
{
int t=*min_element(dis+1,dis+n+1);
// if((*max_element(dis+1,dis+n+1))-t+1>=1000000)
// {
// puts("Impossible.");
// continue;
// }
for(int i=1;i<n;++i)
printf("%d ",dis[i]-t+1);
printf("%d\n",dis[n]-t+1);
}
else
puts("Impossible.");
}
return 0;
}

【差分约束系统】【spfa】UVALive - 4885 - Task的更多相关文章

  1. 差分约束系统 + spfa(A - Layout POJ - 3169)

    题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...

  2. 【差分约束系统/SPFA】POJ3169-Layout

    [题目大意] n头牛从小到大排,它们之间某些距离不能大于一个值,某些距离不能小于一个值,求第一头牛和第N头牛之间距离的最大值. [思路] 由题意可以得到以下不等式d[AL]+DL≥d[BL]:d[BD ...

  3. BZOJ 2330 [SCOI2011]糖果 ——差分约束系统 SPFA

    最小值求最长路. 最大值求最短路. 发现每个约束条件可以转化为一条边,表示一个点到另外一个点至少要加上一个定值. 限定了每一个值得取值下界,然后最长路求出答案即可. 差分约束系统,感觉上更像是两个变量 ...

  4. UVALive - 4885 Task 差分约束

    Task 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page ...

  5. 差分约束系统+spfa(B - World Exhibition HDU - 3592 )

    题目链接:https://cn.vjudge.net/contest/276233#problem/B 思路和上一个一样,不过注意点有两个,第一,对dis数组进行初始化的时候,应该初始化成ox3f3f ...

  6. PKU 1201 Intervals(差分约束系统+Spfa)

    题目大意:原题链接 构造一个集合,这个集合内的数字满足所给的n个条件,每个条件都是指在区间[a,b]内至少有c个数在集合内.问集合最少包含多少个点.即求至少有多少个元素在区间[a,b]内. 解题思路: ...

  7. ACM/ICPC 之 差分约束系统两道(ZOJ2770-POJ1201)

    当对问题建立数学模型后,发现其是一个差分方程组,那么问题可以转换为最短路问题,一下分别选用Bellmanford-SPFA解题 ZOJ2770-Burn the Linked Camp //差分约束方 ...

  8. spfa+差分约束系统(C - House Man HDU - 3440 )+对差分约束系统的初步理解

    题目链接:https://cn.vjudge.net/contest/276233#problem/C 题目大意:有n层楼,给你每个楼的高度,和这个人单次的最大跳跃距离m,两个楼之间的距离最小是1,但 ...

  9. 【bzoj3436】小K的农场 差分约束系统+最长路-Spfa

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801470.html 题目描述 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总 ...

随机推荐

  1. readelf用法小记

    By francis_hao    Feb 14,2017 显示ELF文件的信息 用法概述 readelf和objdump类似,不过,readelf会显示更详细的信息,而且独立于BFD库,因此当BFD ...

  2. Android 对Layout_weight属性完全解析以及使用ListView来实现表格

    用在linearlayout 如果我们想要按照权重比例来分配LinearLayout,我们需要将其宽度设置为0dip http://blog.csdn.net/xiaanming/article/de ...

  3. codeforces 1065D

    题目链接:https://codeforces.com/problemset/problem/1065/D 题意:给你一个又1~n^2组成的n行n列的矩阵,你可以走日字型,直线,斜线,现在要求你从1走 ...

  4. java中的构造块、静态块等说明

    一:这篇博客写的时候我在学校已经一个星期了,为什么又会想到写这le,因为这几天又在重新学下有关spring.myBatis的知识,其中在实例化sessionFactory的时候用到了静态块,虽然在学习 ...

  5. 【HDU5785】Interesting [Manacher]

    Interesting Time Limit: 30 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description Input Outp ...

  6. LeetCode 191:number of one bits

    题目就是: Write a function that takes an unsigned integer and returns the number of ’1' bits it has (als ...

  7. mysql七:数据备份、pymysql模块

    阅读目录 一 IDE工具介绍 二 MySQL数据备份 三 pymysql模块 一 IDE工具介绍 生产环境还是推荐使用mysql命令行,但为了方便我们测试,可以使用IDE工具 下载链接:https:/ ...

  8. ios iphone ipad上iframe的宽度会扩大的解决办法

    这个问题,我从网上查了下,好像是属于ios的bug,android,windows都没有问题. 解决办法,就是在iframe加载完成后,设置 iframe里面body的宽度为多少PX. $(" ...

  9. SpringMVC - 个人对@ModelAttribute的见解 和 一些注入参数、返回数据的见解

    2016-8-23修正. 因为对modelattribute这个注解不了解,所以在网上搜寻一些答案,感觉还是似懂非懂的,所以便自己测试,同时还结合网上别人的答案:最后得出我自己的见解和结果,不知道正确 ...

  10. 我们应选择怎样的IT公司

    最近经常有朋友提问,同时收到几家公司的offer,应该如何选择,或者找工作的时候,找怎样的公司,我在这里阐述一下我的观点.但愿对朋友们有所帮助. 还是那句老话,选择什么样的公司,关键是你想要过什么样的 ...