这道题目就是考验了一下图论基本知识与对可爱的代码实现的应对能力。

我们先分析题干信息。我们要形成相框,那么所有的点的度为2(参与的点),那么所有度大于2的点都需要熔断,而且一次完成所有关于这个点的熔断,也就是说将一个焊点变成一堆度小于等于2的焊点,然后我们发现我们这个时候只需要焊接了。由此可知我们熔断的次数是一定的(除了简单环,度为2的点不需要熔断,因为这样做只会做负贡献),就好是熔断所有度大于2的点以及独立简单环,那么现在我们要做的就是让焊接次数最少,也就是分成较少的链。对于独立欧拉图不用讲就是一条,对于存在奇数入度的点的图,我们观察,他最少的条数就是奇点的个数除二,因为所有链(相互独立不可合并)的两端的点一定是奇数点(如果是偶数点意味着有其他端点对着他那么这条路径就可以删去了),然后我们再看他的可行性我们如果用奇数点除二的边将这些点互相连接,就会存在欧拉图那么我们在去掉我们加上的边就会的到那些条路径。

于是我们找联通块,(特别的如果我们的图是一个简单环就输出0,如果我们的图是一个欧拉图我们就是只熔断),对于欧拉图联通块我们化成一条链,(特别的对于简单环我们手动熔断),对半欧拉图我们把它化成奇数点除二条链。

于此注意细节便可A。

#include <cstdio>
#include <cstring>
const int N=;
const int M=;
struct V{
int to,next;
}c[M<<];
int head[M<<],t;
inline void add(int x,int y){
c[++t].to=y,c[t].next=head[x],head[x]=t;
}
int n,m,sz,size[M<<];
bool v[M<<];
inline bool judge(){
if(n!=sz)return false;
for(int i=;i<=n;++i)
if(size[i]!=)return false;
return true;
}
void dfs(int x,int &sum,int &is){
if(v[x])return;
v[x]=true,sum+=(x>n||(size[x]&))?:;
if(size[x]!=)is=;
for(int i=head[x];i;i=c[i].next)
dfs(c[i].to,sum,is);
}
inline int get(){
int ret=,first=-,sum=,ou=-;
for(int i=;i<=sz;++i)
if(v[i]==false&&(size[i]!=||i>n)){
int num=,is=;dfs(i,num,is);
++sum;
if(num==)ret+=+is;
else ret+=num>>;
if(first==-)first=num,ou=is;
}
for(int i=;i<=n;++i)
if(size[i]>)
++ret;
if(sum==&&first==&&ou==)ret=;
if(sum==&&first==)ret--;
return ret;
}
int main(){
scanf("%d%d",&n,&m),sz=n;
for(int i=,x,y;i<=m;++i){
scanf("%d%d",&x,&y);
if(x)size[x]++;
else x=++sz;
if(y)size[y]++;
else y=++sz;
add(x,y),add(y,x);
}
printf("%d",get());
return ;
}

【BZOJ 2503】相框 图论+讨论的更多相关文章

  1. bzoj 2503 相框 分类讨论

    题目大意:给定一张无向图,每次可以进行以下两种操作: 1.将一个点分裂成一些点,原先这个点连接的每条边任选一个新点进行连接 2.将两个度数为1的点合并为1个点 求将这个图变成一个环的最小操作次数 我们 ...

  2. bzoj 2503 相框——思路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2503 我也知道应该只关注度数. #include<iostream> #incl ...

  3. bzoj 1067 分情况讨论

    这道题考察人的严谨,各种情况分类讨论. #include <cstdio> #include <algorithm> #include <map> #define ...

  4. 【BZOJ-2503】相框 并查集 + 分类讨论

    2503: 相框 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 71  Solved: 31[Submit][Status][Discuss] Desc ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. BZOJ 1067 降雨量(RMQ-ST+有毒的分类讨论)

    1067: [SCOI2007]降雨量 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 4399  Solved: 1182 [Submit][Stat ...

  7. 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]

    BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1655  Solved: 798[Submit][S ...

  8. 枚举(分类讨论):BZOJ 1177: [Apio2009]Oil

    1177: [Apio2009]Oil Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1477  Solved: 589[Submit] Descri ...

  9. BZOJ 4086: [Sdoi2015]travel(SDOI2015 round2 day1)(分类讨论+容斥原理)

    描述:给定一张图(n<1000,m<5000)求有多少点对u,v有不重复经过其他点,共经过k个点的路径.(k<=7) 这个做法应该不是正解吧..顺便说下SDOI的几道题在BZ上都要卡 ...

随机推荐

  1. ThinkPHP 5 整合支付宝微信支付(支付宝H5,微信H5、APP支付、公众号支付)

    因项目没有PC站所以没有写电脑网站支付. Pay.php支付控制器 <?php // +----------------------------------------------------- ...

  2. Hadoop(19)-MapReduce框架原理-Combiner合并

    1. Combiner概述 2. 自定义Combiner实现步骤 1). 定义一个Combiner继承Reducer,重写reduce方法 public class WordcountCombiner ...

  3. 开发必备知识点--django项目启动时,url加载之前,执行某个.py文件

    django项目启动时,自定义执行某个py文件 在任意的app下的apps.py中的Config类下自定义ready()方法,并且调用autodiscover_modules. app01/apps. ...

  4. 实现一个带有指纹加密功能的笔记本(Android)第一部分

    自己经常会忘记一些密码什么的,想把这些密码保存下来,但是别人做的软件总有一点不安全的感觉,所以自己动手做了一个带有指纹加密的笔记本. 以下是本工程用到的一些第三方包 compile 'org.gree ...

  5. 初步学习pg_control文件之三

    接前文,初步学习pg_control文件之二 继续学习: 研究 DBState,先研究 DB_IN_PRODUCTION ,看它如何出现: 它出现在启动Postmaster时运行的函数处: /* * ...

  6. LI 标签中让文章标题左对齐,日期右对齐的方法

    希望实现标题在左对齐,日期在右对齐,当直接给日期的span加上float:right时,IE8和FF都OK,但IE6/7则会换行,下面给出一个简单有效的解决办法. <!DOCTYPE html  ...

  7. Anytime项目开发记录1

    关于Android APP 应用设计,我并没有接受过系统的学习. 下面,是按照我一直以来的方法来进行编辑. 由于在程序开始之前并没有画类图,这里简单的讲述一下程序是如何设计的. 自己实现了一个Appl ...

  8. fiddler抓包工具的基本使用

    fiddler是基于C#的HTTP抓包工具. fiddler的原理: fiddler是http代理服务器,它会抓取浏览器向服务器发送的HTTP请求,然后在将该请求发送到服务器.再获取从服务器返回的请求 ...

  9. adb常用命令(手机测试)

                                                   ADB安装与常用命令详解 一.ADB意义 adb的全称为Android Debug Bridge,就是起到 ...

  10. python基础篇 07set集合 深浅拷贝

    本节主要内容:1. 基础数据类型补充2. set集合3. 深浅拷⻉ " ".join方法 循环删除列表中的内容:   错误的  原因:在for循环中,循环到第一个,然后删除,删除之 ...