转自:http://blog.sina.com.cn/s/blog_6a67b5c50100vop9.html

dfs.block.size

决定HDFS文件block数量的多少(文件个数),它会间接的影响Job Tracker的调度和内存的占用(更影响内存的使用),

mapred.map.tasks.speculative.execution=true 

mapred.reduce.tasks.speculative.execution=true

这是两个推测式执行的配置项,默认是true

所谓的推测执行,就是当所有task都开始运行之后,Job Tracker会统计所有任务的平均进度,如果某个task所在的task
node机器配

置比较低或者CPU load很高(原因很多),导致任务执行比总体任务的平均执行要慢,此时Job
Tracker会启动一个新的任务

(duplicate task),原有任务和新任务哪个先执行完就把另外一个kill掉,这也是我们经常在Job
Tracker页面看到任务执行成功,但

是总有些任务被kill,就是这个原因。

mapred.child.java.opts

一般来说,都是reduce耗费内存比较大,这个选项是用来设置JVM堆的最大可用内存,但不要设置过大,如果超过2G(这是数字有

待考证),就应该考虑一下优化程序。

Input
Split的大小,决定了一个Job拥有多少个map,默认64M每个Split,如果输入的数据量巨大,那么默认的64M的block会有特

别多Map Task,集群的网络传输会很大,给Job Tracker的调度、队列、内存都会带来很大压力。

mapred.min.split.size

这个配置决定了每个Input Split 的最小值,也间接决定了一个job的map数量

HDFS块大小是在job写入时决定的,而分片的大小,是由三个元素决定的(在3各种去最大的那个)

(1) 输入的块数 (2) Mapred.min.split.size (3) Job.setNumMapTasks()

mapred.compress.map.output

压缩Map的输出,这样做有两个好处:
a)压缩是在内存中进行,所以写入map本地磁盘的数据就会变小,大大减少了本地IO次数
b) Reduce从每个map节点copy数据,也会明显降低网络传输的时间
注:数据序列化其实效果会更好,无论是磁盘IO还是数据大小,都会明显的降低。

io.sort.mb
以MB为单位,默认100M,这个值比较小
map节点没运行完时,内存的数据过多,要将内存中的内容写入洗盘,这个设置就是设置内存缓冲的大小,在suffle之前
这个选项定义了map输出结果在内存里占用buffer的大小,当buffer达到某个阈值(后面那条配置),会启动一个后台线程来对buffer

的内容进行排序,然后写入本地磁盘(一个spill文件)

根据map输出数据量的大小,可以适当的调整buffer的大小,注意是适当的调整,并不是越大越好,假设内存无限大,

io.sort.mb=1024(1G), 和io.sort.mb=300 (300M),前者未必比后者快:
(1)1G的数据排序一次
(2)排序3次,每次300MB
一定是后者快(归并排序)

io.sort.spill.percent
这个值就是上面提到的buffer的阈值,默认是0.8,既80%,当buffer中的数据达到这个阈值,后台线程会起来对buffer中已有的数

据进行排序,然后写入磁盘,此时map输出的数据继续往剩余的20%
buffer写数据,如果buffer的剩余20%写满,排序还没结束,

map task被block等待。
如果你确认map输出的数据基本有序,排序时间很短,可以将这个阈值适当调高,更理想的,如果你的map输出是有序的数据,那

么可以把buffer设的更大,阈值设置为1.

Io.sort.factor
同时打开的文件句柄的数量,默认是10
当一个map task执行完之后,本地磁盘上(mapred.local.dir)有若干个spill文件,map
task最后做的一件事就是执行merge sort,

把这些spill文件合成一个文件(partition,combine阶段)。
执行merge
sort的时候,每次同时打开多少个spill文件,就是由io.sort.factor决定的。打开的文件越多,不一定merge
sort就越

快,也要根据数据情况适当的调整。
注:merge排序的结果是两个文件,一个是index,另一个是数据文件,index文件记录了每个不同的key在数据文件中的偏移量(即partition)。

在map节点上,如果发现map所在的子节点的机器io比较重,原因可能是io.sort.factor这个设置的比较小,io.sort.factor设置小的

话,如果spill文件比较多,merge成一个文件要很多轮读取操作,这样就提升了io的负载。io.sort.mb小了,也会增加io的负载。

如果设置了执行combine的话,combine只是在merge的时候,增加了一步操作,不会改变merge的流程,所以combine不会减少

或者增加文件个数。另外有个min.num.spills.for.combine的参数,表示执行一个merge操作时,如果输入文件数小于这个数字,就

不调用combiner。如果设置了combiner,在写spill文件的时候也会调用,这样加上merge时候的调用,就会执行两次combine。

提高Reduce的执行效率,除了在Hadoop框架方面的优化,重点还是在代码逻辑上的优化.比如:对Reduce接受到的value可能有重

复的,此时如果用Java的Set或者STL的Set来达到去重的目的,那么这个程序不是扩展良好的(non-scalable),受到数据量的限制,

当数据膨胀,内存势必会溢出

mapred.reduce.parallel.copies
Reduce copy数据的线程数量,默认值是5
Reduce到每个完成的Map Task
拷贝数据(通过RPC调用),默认同时启动5个线程到map节点取数据。这个配置还是很关键的,

如果你的map输出数据很大,有时候会发现map早就100%了,reduce却在缓慢的变化,那就是copy数据太慢了,比如5个线程

copy 10G的数据,确实会很慢,这时就要调整这个参数,但是调整的太大,容易造成集群拥堵,所以 Job
tuning的同时,也是个权

衡的过程,要熟悉所用的数据!
mapred.job.shuffle.input.buffer.percent
当指定了JVM的堆内存最大值以后,上面这个配置项就是Reduce用来存放从Map节点取过来的数据所用的内存占堆内存的比例,默

认是0.7,既70%,通常这个比例是够了,但是对于大数据的情况,这个比例还是小了一些,0.8-0.9之间比较合适。(前提是你的

reduce函数不会疯狂的吃掉内存)
mapred.job.shuffle.merge.percent(默认值0.66)
mapred.inmem.merge.threshold(默认值1000)

第一个指的是从Map节点取数据过来,放到内存,当达到这个阈值之后,后台启动线程(通常是Linux native
process)把内存中的

数据merge sort,写到reduce节点的本地磁盘;
第二个指的是从map节点取过来的文件个数,当达到这个个数之后,也进行merger
sort,然后写到reduce节点的本地磁盘;这两

个配置项第一个优先判断,其次才判断第二个thresh-hold。
从实际经验来看,mapred.job.shuffle.merge.percent默认值偏小,完全可以设置到0.8左右;第二个默认值1000,完全取决于

map输出数据的大小,如果map输出的数据很大,默认值1000反倒不好,应该小一些,如果map输出的数据不大(light

weight),可以设置2000或者以上。
mapred.reduce.slowstart.completed.maps
(map完成多少百分比时,开始shuffle)

当map运行慢,reduce运行很快时,如果不设置mapred.reduce.slowstart.completed.maps会使job的shuffle时间变的很长,

map运行完很早就开始了reduce,导致reduce的slot一直处于被占用状态。mapred.reduce.slowstart.completed.maps
这个值是

和“运行完的map数除以总map数”做判断的,当后者大于等于设定的值时,开始reduce的shuffle。所以当map比reduce的执行

时间多很多时,可以调整这个值(0.75,0.80,0.85及以上)

下面从流程里描述一下各个参数的作用:
当map task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘。这中间的过程比较复杂,并且利用到了

内存buffer来进行已经产生的部分结果的缓存,并在内存buffer中进行一些预排序来优化整个map的性能。每一个map都会对应存

在一个内存buffer(MapOutputBuffer),map会将已经产生的部分结果先写入到该buffer中,这个buffer默认是100MB大小,但

是这个大小是可以根据job提交时的参数设定来调整的,该参数即为:io.sort.mb。当map的产生数据非常大时,并且把io.sort.mb

调大,那么map在整个计算过程中spill的次数就势必会降低,map task对磁盘的操作就会变少,如果map
tasks的瓶颈在磁盘上,

这样调整就会大大提高map的计算性能。
map在运行过程中,不停的向该buffer中写入已有的计算结果,但是该buffer并不一定能将全部的map输出缓存下来,当map输出

超出一定阈值(比如100M),那么map就必须将该buffer中的数据写入到磁盘中去,这个过程在mapreduce中叫做spill。map并

不是要等到将该buffer全部写满时才进行spill,因为如果全部写满了再去写spill,势必会造成map的计算部分等待buffer释放空间的

情况。所以,map其实是当buffer被写满到一定程度(比如80%)时,就开始进行spill。这个阈值也是由一个job的配置参数来控

制,即io.sort.spill.percent,默认为0.80或80%。这个参数同样也是影响spill频繁程度,进而影响map
task运行周期对磁盘的读写

频率的。但非特殊情况下,通常不需要人为的调整。调整io.sort.mb对用户来说更加方便。
当map
task的计算部分全部完成后,如果map有输出,就会生成一个或者多个spill文件,这些文件就是map的输出结果。map在正

常退出之前,需要将这些spill合并(merge)成一个,所以map在结束之前还有一个merge的过程。merge的过程中,有一个参数

可以调整这个过程的行为,该参数为:io.sort.factor。该参数默认为10。它表示当merge
spill文件时,最多能有多少并行的stream

向merge文件中写入。比如如果map产生的数据非常的大,产生的spill文件大于10,而io.sort.factor使用的是默认的10,那么当

map计算完成做merge时,就没有办法一次将所有的spill文件merge成一个,而是会分多次,每次最多10个stream。这也就是说,

当map的中间结果非常大,调大io.sort.factor,有利于减少merge次数,进而减少map对磁盘的读写频率,有可能达到优化作业的

目的。
当job指定了combiner的时候,我们都知道map介绍后会在map端根据combiner定义的函数将map结果进行合并。运行combiner

函数的时机有可能会是merge完成之前,或者之后,这个时机可以由一个参数控制,即min.num.spill.for.combine(default
3),

当job中设定了combiner,并且spill数最少有3个的时候,那么combiner函数就会在merge产生结果文件之前运行。通过这样的方

式,就可以在spill非常多需要merge,并且很多数据需要做conbine的时候,减少写入到磁盘文件的数据数量,同样是为了减少对磁

盘的读写频率,有可能达到优化作业的目的。
减少中间结果读写进出磁盘的方法不止这些,还有就是压缩。也就是说map的中间,无论是spill的时候,还是最后merge产生的结

果文件,都是可以压缩的。压缩的好处在于,通过压缩减少写入读出磁盘的数据量。对中间结果非常大,磁盘速度成为map执行瓶

颈的job,尤其有用。控制map中间结果是否使用压缩的参数为:mapred.compress.map.output(true/false)。将这个参数设置为

true时,那么map在写中间结果时,就会将数据压缩后再写入磁盘,读结果时也会采用先解压后读取数据。这样做的后果就是:写

入磁盘的中间结果数据量会变少,但是cpu会消耗一些用来压缩和解压。所以这种方式通常适合job中间结果非常大,瓶颈不在

cpu,而是在磁盘的读写的情况。说的直白一些就是用cpu换IO。根据观察,通常大部分的作业cpu都不是瓶颈,除非运算逻辑异常

复杂。所以对中间结果采用压缩通常来说是有收益的。
当采用map中间结果压缩的情况下,用户还可以选择压缩时采用哪种压缩格式进行压缩,现在hadoop支持的压缩格式有:

GzipCodec,LzoCodec,BZip2Codec,LzmaCodec等压缩格式。通常来说,想要达到比较平衡的cpu和磁盘压缩比,LzoCodec

比较适合。但也要取决于job的具体情况。用户若想要自行选择中间结果的压缩算法,可以设置配置参数:

mapred.map.output.compression.codec=org.apache.hadoop.io.compress.DefaultCodec或者其他用户自行选择的压缩方式。

Hadoop参数调优的更多相关文章

  1. hadoop 参数调优重点参数

    yarn的参数调优,必调参数 28>.yarn.nodemanager.resource.memory-mb  默认为8192.每个节点可分配多少物理内存给YARN使用,考虑到节点上还 可能有其 ...

  2. CM记录-Hadoop参数调优

    1.HDFS调优 a.设置合理的块大小(dfs.block.size) b.将中间结果目录设置为分布在多个磁盘以提升写入速度(mapred.local.dir) c.设置DataNode处理RPC的线 ...

  3. 七、Hadoop学习笔记————调优之Hadoop参数调优

    dfs.datanode.handler.count默认为3,大集群可以调整为10 传统MapReduce和yarn对比 如果服务器物理内存128G,则容器内存建议为100比较合理 配置总量时考虑系统 ...

  4. emr hadoop 参数调优

    set hive.merge.mapfiles=true; set hive.merge.mapredfiles=true; ; ; set hive.exec.compress.intermedia ...

  5. hadoop 性能调优与运维

    hadoop 性能调优与运维 . 硬件选择 . 操作系统调优与jvm调优 . hadoop运维 硬件选择 1) hadoop运行环境 2)  原则一: 主节点可靠性要好于从节点 原则二:多路多核,高频 ...

  6. hadoop作业调优参数整理及原理(转)

    1 Map side tuning参数 1.1 MapTask运行内部原理 当map task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘.这中间的过程比较复杂,并且利用到了内 ...

  7. hadoop作业调优参数整理及原理【转】

    1 Map side tuning参数 1.1 MapTask运行内部原理 当map task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘.这中间的过程比较复杂,并且利用到了内 ...

  8. hadoop作业调优参数整理及原理

    hadoop作业调优参数整理及原理 10/22. 2013 1 Map side tuning参数 1.1 MapTask运行内部原理 当map task开始运算,并产生中间数据时,其产生的中间结果并 ...

  9. Hbase和Hadoop的内存参数调优 + 前端控制台

    1.hadoop的内存配置调优 mapred-site.xml的内存调整 <property> <name>mapreduce.map.memory.mb</name&g ...

随机推荐

  1. 《ArcGIS Runtime SDK for Android开发笔记》——(15)、要素绘制Drawtools3.0工具DEMO

    1.前言 移动GIS项目开发中点线面的要素绘制及编辑是最常用的操作,在ArcGIS Runtime SDK for iOS 自带AGSSketchLayer类可以帮助用户快速实现要素的绘制,图形编辑. ...

  2. wx.grid

    wxPython控件学习之wx.grid.Grid (包括对GridCellEditor和GridCelRender的扩展,以支持更多的grid cell 样式, 以GridCellColorEdit ...

  3. wxpython wx.windows的API

    wx.Window is the base class for all windows and represents any visible object on screen. All control ...

  4. Android应用开发基础之八:广播与服务(二)

    服务两种启动方式 startService:服务被启动之后,跟启动它的组件没有一毛钱关系 bindService:跟启动它的组件同生共死 绑定服务和解绑服务的生命周期方法:onCreate->o ...

  5. event.cancelBubble=true

    <tr><a href="xxx">连接</a></tr> 如上结构,单击tr的时候跳转至另一页面 <tr style=&qu ...

  6. elasticsearch 概念

    elasticsearch 来源:https://baike.baidu.com/item/elasticsearch/3411206?fr=aladdin ElasticSearch是一个基于Luc ...

  7. March 28 2017 Week 13 Tuesday

    Never was anything great achieved without danger. 不经历风雨,又怎能见彩虹. After the rain, if there's the sunsh ...

  8. 站在巨人肩膀上的牛顿:Kubernetes和SAP Kyma

    这周Jerry在SAP上海研究院参加了一个为期4天的Kubernetes培训,度过了忙碌而又充实的4天.Jason,Benny和Peng三位大神的培训干货满满,借此机会,Jerry和过去的两位老领导P ...

  9. 创建VS工程使用神经网络库——FANN

    编译: sourceforge上的FANN库带VS2010的工程,我机器上装的VS2005,用不了,愁人,只能手动创建工程了,编译不过,度娘不管用,FQ麻烦,用雅虎搜到一个工程的创建配置,调整配置试一 ...

  10. Python—XML

    什么是xml XML 指可扩展标记语言(EXtensible Markup Language) XML 是一种标记语言,很类似 HTML XML 的设计宗旨是传输数据,而非显示数据 XML 标签没有被 ...