Description

对于正整数n,定义f(n)为n所含质因子的最大幂指数。例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0。

给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b)。

Input

第一行一个数T,表示询问数。

接下来T行,每行两个数a,b,表示一个询问。

Output

对于每一个询问,输出一行一个非负整数作为回答。

Sample Input

4

7558588 9653114

6514903 4451211

7425644 1189442

6335198 4957

Sample Output

35793453939901

14225956593420

4332838845846

15400094813

HINT

T<=10000

1<=a,b<=10^7

sol

先推式子,假设a<b,枚举gcd:

\(ans=\sum_{i=1}^{a}\sum_{j=1}^{b}f(i,j)\)

\(=\sum_{d=1}^{a}f(d)\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{b}{d}\rfloor}[(i,j)=1]\)

\(=\sum_{d=1}^{a}f(d)\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\mu(i)\lfloor\frac{a}{id}\rfloor\lfloor\frac{b}{id}\rfloor\)

\(=\sum_{T=1}^{a}\lfloor\frac{a}{T}\rfloor\lfloor\frac{b}{T}\rfloor\sum_{d|T}f(d)\mu(\frac{T}{d})\)

前面那个玩意直接数论分块就可以了,然后分析后面的式子:

我们只考虑没有平方因子的T/d,那么此时f(d)的取值只有两种:T最高次质因数幂-1或者T最高次质因数幂。

如果取的是最高次质因数幂,那么我们发现,T/d中剩下的数字次数可以是0也可以是1,那么根据莫比乌斯函数的定义,\(\mu(\frac{T}{d})\)一定等于0,不会产生任何贡献。

如果取的是最高次质因数幂-1,那么我们发现,满足最高次幂的指数在T/d中都是1次项,其他数字随意,根据莫比乌斯函数的定义,mu一定是0,不会产生任何贡献。

所以现在只剩下了两种情况:1.质数2.d中所有次幂都相等

线性筛即可,线性筛处理出每个数字最高次质因数幂和最高次质因数幂的乘积,便可以在线性筛中直接判断。

code

#include <bits/stdc++.h>
using namespace std;
int g[10000007],a[10000007],pri[10000007],vis[10000007],sum[10000007],ma[10000007],T,n,m,tot;
long long cal(int a,int b)
{
if(a>b) swap(a,b);
long long ans=0;
for(int i=1,last=0;i<=a;i=last+1) last=min(a/(a/i),b/(b/i)),ans+=1ll*(a/i)*(b/i)*(sum[last]-sum[i-1]);
return ans;
}
int main()
{
for(int i=2;i<=1e7;i++)
{
if(!vis[i]){pri[++tot]=i;g[i]=1,a[i]=1;ma[i]=i;}
for(int j=1,k;j<=tot&&(k=i*pri[j])<=1e7;j++)
{
vis[k]=1;
if(i%pri[j]==0)
{
a[k]=a[i]+1;ma[k]=ma[i]*pri[j];
if(i==ma[i]) g[k]=1;
else g[k]=(a[i/ma[i]]==a[k]?-g[i/ma[i]]:0);
}
else a[k]=1,ma[k]=pri[j],g[k]=(a[i]==1?-g[i]:0);
}
sum[i]=sum[i-1]+g[i];
}
for(scanf("%d",&T);T--;printf("%lld\n",cal(n,m))) scanf("%d%d",&n,&m);
}

【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛的更多相关文章

  1. [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)

    $\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...

  2. 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)

    [BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...

  3. BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]

    题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...

  4. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  5. bzoj 3309 DZY Loves Math 莫比乌斯反演

    DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1303  Solved: 819[Submit][Status][Dis ...

  6. BZOJ3309 DZY Loves Maths 莫比乌斯反演、线性筛

    传送门 推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^Mf(gcd(i,j)) & = ...

  7. 【BZOJ3309】DZY Loves Math - 莫比乌斯反演

    题意: 对于正整数n,定义$f(n)$为$n$所含质因子的最大幂指数.例如$f(1960)=f(2^3 * 5^1 * 7^2)=3$,$f(10007)=1$,$f(1)=0$. 给定正整数$a,b ...

  8. BZOJ 3309 DZY Loves Math ——莫比乌斯反演

    枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...

  9. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

随机推荐

  1. Python——string

    字符串操作 string典型的内置方法: count() center() startswith() find() format() lower() upper() strip() replace() ...

  2. 清除stoped impdp/expdp job的方法

    stoped impdp/expdp job会在dba_datapump_jobs中留下一条记录,显示为not running. 清除stopped job分两种情况: 1) job能够attach ...

  3. Java的单向加密算法MD5和SHA——加密和解密

    出自:http://www.cnblogs.com/onetwo/p/3875551.html 1.JDK中MD5和SHA加密的主要类 在JDK6.0中,与MD5与SHA密切相关的几个类的类图如下:  ...

  4. 算法初步——two pointers

    什么是 two pointers 以一个例子引入:给定一个递增的正整数序列和一个正整数 M,求序列中的两个不同位置的数 a 和 b,使得它们的和恰好为 M,输出所有满足条件的方案. 本题的一个最直观的 ...

  5. python 中 print 函数用法总结

    Python 思想: “一切都是对象!” 在 Python 3 中接触的第一个很大的差异就是缩进是作为语法的一部分,这和C++等其他语言确实很不一样,所以要小心 ,其中python3和python2中 ...

  6. day18-事务与连接池 2.事务介绍与mysql下事务操作

    这么玩 真的变了吗?把cmd窗口关闭了看看. 就是固定的套路才行:start transaction->执行SQL->rollback; 执行每一条SQL之前都要start transac ...

  7. mysql GROUP_CONCAT 可以将分组的字段进行拼接处理.

    GROUP_CONCAT 可以将分组的字段进行拼接处理. SELECT g.id, g.merchant_id, g. NAME, g.introduction, g.cover_pic, g.pla ...

  8. 几种导入osm(openstreetmap)数据的方法

    一osm2pgsql+postgresql+postgis osm2pgsql­——是由OpenStreetMap开发的一个命令行工具负责将OSM数据导入到基于PostgresSql的Postgis的 ...

  9. Oracle——SQL基础

    一.SQL语句分为以下三种类型: DML: Data Manipulation Language 数据操纵语言DDL: Data Definition Language 数据定义语言DCL: Data ...

  10. 关于instanceof测试遇到的问题

    今天上上课 用 instanceof关键字来判断某个对象是否属于某种数据类型.报错  代码如下 package cn.lijun.demo3; import cn.lijun.demo.Person; ...