题意翻译

nnn 个数, qqq 次操作

操作0 x y把 AxA_xAx​ 修改为 yyy

操作1 l r询问区间 [l,r][l, r][l,r] 的最大子段和

题目描述

You are given a sequence A of N (N <= 50000) integers between -10000 and 10000. On this sequence you have to apply M (M <= 50000) operations:
modify the i-th element in the sequence or for given x y print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.

输入输出格式

输入格式:

The first line of input contains an integer N. The following line contains N integers, representing the sequence A1..AN.
The third line contains an integer M. The next M lines contain the operations in following form:
0 x y: modify Ax into y (|y|<=10000).
1 x y: print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.

输出格式:

For each query, print an integer as the problem required.

思路:

这道题与GSS1很像(没做过GSS1的点这里

但这个题怎么办呢?

大家应该记得,我做GSS1时,并没有建树这个步骤

而是直接将原始节点都变为-inf,然后通过单点修改的方式建树

那么GSS3就很简单了

我们不需要动修改函数(因为都是单点)

直接在循环中引用即可(我才不会告诉你我是先写的GSS3)

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define rii register int i
#define rij register int j
#define inf 1073741824
#define rs 65536
using namespace std;
struct nod{
int lm,rm,maxn,sum;
}x[];
int n,q,cz,x1,y1;
void add(int wz,int l,int r,int val,int bh)
{
if(l==r&&l==wz)
{
x[bh].maxn=val;
x[bh].lm=val;
x[bh].rm=val;
x[bh].sum=val;
return;
}
int ltt=(l+r)/;
if(wz<=ltt)
{
add(wz,l,ltt,val,bh*);
}
else
{
add(wz,ltt+,r,val,bh*+);
}
x[bh].sum=x[bh*].sum+x[bh*+].sum;
x[bh].lm=max(x[bh*].lm,x[bh*].sum+x[bh*+].lm);
x[bh].rm=max(x[bh*+].rm,x[bh*+].sum+x[bh*].rm);
x[bh].maxn=max(x[bh*].maxn,max(x[bh*+].maxn,x[bh*].rm+x[bh*+].lm));
}
nod query(int l,int r,int nl,int nr,int bh)
{
nod an,bn;
if(l<nl)
{
l=nl;
}
if(r>nr)
{
r=nr;
}
if(nl==l&&nr==r)
{
an=x[bh];
return an;
}
int ltt=(nl+nr)/;
if(l<=ltt&&r<=ltt)
{
return an=query(l,r,nl,ltt,bh*);
}
if(r>ltt&&l>ltt)
{
return bn=query(l,r,ltt+,nr,bh*+);
}
else
{
an=query(l,r,nl,ltt,bh*);
bn=query(l,r,ltt+,nr,bh*+);
an.maxn=max(an.maxn,max(bn.maxn,an.rm+bn.lm));
an.lm=max(an.lm,an.sum+bn.lm);
an.rm=max(bn.rm,bn.sum+an.rm);
an.sum=an.sum+bn.sum;
return an;
} }
int main()
{
// freopen("brs.in","r",stdin);
// freopen("brs.out","w",stdout);
for(rii=;i<=;i++)
{
x[i].lm=-inf;
x[i].rm=-inf;
x[i].maxn=-inf;
}
scanf("%d",&n);
for(rii=;i<=n;i++)
{
int ltt;
scanf("%d",&ltt);
add(i,,rs,ltt,);
}
scanf("%d",&q);
for(rii=;i<=q;i++)
{
scanf("%d%d%d",&cz,&x1,&y1);
if(cz==)
{
nod ans=query(x1,y1,,rs,);
printf("%d\n",ans.maxn);
}
else
{
add(x1,,rs,y1,);
}
}
}

SP1716 GSS3 - Can you answer these queries III(单点修改,区间最大子段和)的更多相关文章

  1. 线段树 SP1716 GSS3 - Can you answer these queries III

    SP1716 GSS3 - Can you answer these queries III 题意翻译 n 个数,q 次操作 操作0 x y把A_xAx 修改为yy 操作1 l r询问区间[l, r] ...

  2. SP1716 GSS3 - Can you answer these queries III 线段树

    问题描述 [LG-SP1716](https://www.luogu.org/problem/SP1716] 题解 GSS 系列的第三题,在第一题的基础上带单点修改. 第一题题解传送门 在第一题的基础 ...

  3. SP1716 GSS3 - Can you answer these queries III - 动态dp,线段树

    GSS3 Description 动态维护最大子段和,支持单点修改. Solution 设 \(f[i]\) 表示以 \(i\) 为结尾的最大子段和, \(g[i]\) 表示 \(1 \sim i\) ...

  4. SP1716 GSS3 - Can you answer these queries III

    题面 题解 相信大家写过的传统做法像这样:(这段代码蒯自Karry5307的题解) struct SegmentTree{ ll l,r,prefix,suffix,sum,maxn; }; //.. ...

  5. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  6. 数据结构(线段树):SPOJ GSS3 - Can you answer these queries III

    GSS3 - Can you answer these queries III You are given a sequence A of N (N <= 50000) integers bet ...

  7. 【SP1716】GSS3 - Can you answer these queries III(动态DP)

    题目链接 之前用线段树写了一遍,现在用\(ddp\)再写一遍. #include <cstdio> #define lc (now << 1) #define rc (now ...

  8. 题解 SP1716 【GSS3 - Can you answer these queries III】

    \[ Preface \] 没有 Preface. \[ Description \] 维护一个长度为 \(n\) 的数列 \(A\) ,需要支持以下操作: 0 x y 将 \(A_x\) 改为 \( ...

  9. 题解【SP1716】GSS3 - Can you answer these queries III

    题目描述 You are given a sequence \(A\) of \(N (N <= 50000)\) integers between \(-10000\) and \(10000 ...

随机推荐

  1. oracle之数据同步:Oracle Sql Loader使用说明(大批量快速插入数据库记录)

    1.准备表数据 select * from emp10; create sequence seq_eseq increment start maxvalue ; --得到序列的SQL语句 select ...

  2. sql server中将自增长列归零

    一个项目完成后数据库中会有很多无用的测试数据,可以使用delete * 将数据全部删除,但自增长列(一般是主键)基数不会归零,使用TRUNCATE函数可以将表中数据全部删除,并且将自增长列基数归零.一 ...

  3. wxpython wx.windows的API

    wx.Window is the base class for all windows and represents any visible object on screen. All control ...

  4. 龙珠直播之swot

    版本 v 0.3 龙珠直播有品牌优势,依托于苏宁PPTV,有大背景,有体育视频资源可用. 龙珠内容没有特色,没有特别火的亮点,定位于体育,没有免费路线,不能吸引大量活跃用户,女主播方式也没十分特点,解 ...

  5. Java—IO流 RandomAccessFile类

    RandomAccessFile java提供的对文件内容的访问,既可以读文件,也可以写文件. 支持随机访问文件,可以访问文件的任意位置. java文件模型,在硬盘上的文件是byte byte byt ...

  6. PB调用C#编写的DLL

    C#以其简单易用,功能强大深受大家喜爱.PowerBuilder作为C/S的MIS开发工具,十分简单灵活,开发时间短,开发及维护成本低,一直是中小企业信息管理系统的首选开发工具.但是PB的局限性限制了 ...

  7. Selenium2学习(十二)-- alert\confirm\prompt

    前言 不是所有的弹出框都叫alert,在使用alert方法前,先要识别出到底是不是alert.先认清楚alert长什么样子,下次碰到了,就可以用对应方法解决. alert\confirm\prompt ...

  8. Orchard Core 文档翻译 (三) Orchard Core Modules

    原文连接:https://www.cnblogs.com/Qbit/p/9746442.html 转载请注明出处 介绍 Orchard Core Modules库提供了一种机制,可以拥有一个独立的模块 ...

  9. STM32-F429ZIT6-关于驱动安装

    第一步:下载驱动 1.个人百度云链接:http://pan.baidu.com/s/1dE8vxy5 密码:yow0 2.网站下载:这个还是直接百度吧. 第二步:驱动安装 注意:安装之前要先关闭安全监 ...

  10. python25 python的三目运算符

    其他语言的三目运算符大类似: 条件 ?  条件为真返回值: 条件为假返回值 python不一样: 条件为真的返回值  if  条件  else  条件为假的返回值                 或者 ...