摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479

和 https://en.wikipedia.org/wiki/Laplacian_matrix

定义

给定一个由n个顶点的简单图G,它的拉普拉斯矩阵定义为:

L = D - A,其中,D是该图G度的矩阵,A为图G的邻接矩阵。

因为G是一个简单图,A只包含0,1,并且它的对角元素均为0.

L中的元素给定为:

其中deg(vi) 表示顶点 i 的度。

对称归一化的拉普拉斯 (Symmetric normalized Laplacian)

对称归一化的拉普拉斯矩阵定义为:

,

 的元素给定为:

随机游走归一化的拉普拉斯 (Random walk normalized Laplacian)

随机游走归一化的拉普拉斯矩阵定义为:

 的元素给定为

泛化的拉普拉斯 (Generalized Laplacian)

泛化的拉普拉斯Q定义为:

注意:普通的拉普拉斯矩阵为泛化的拉普拉斯矩阵。

例子

Labeled graph Degree matrix Adjacency matrix Laplacian matrix

拉普拉斯矩阵半正定性证明

拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明的更多相关文章

  1. SC3聚类 | 拉普拉斯矩阵 | Laplacian matrix | 图论 | R代码

    Laplacian和PCA貌似是同一种性质的方法,坐标系变换.只是拉普拉斯属于图论的范畴,术语更加专业了. 要看就把一篇文章看完整,再看其中有什么值得借鉴的,总结归纳理解后的东西才是属于你的. 问题: ...

  2. 拉普拉斯矩阵(Laplacian matrix)

    原文地址:https://www.jianshu.com/p/f864bac6cb7a 拉普拉斯矩阵是图论中用到的一种重要矩阵,给定一个有n个顶点的图 G=(V,E),其拉普拉斯矩阵被定义为 L = ...

  3. 拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)

    作者:桂. 时间:2017-04-13  07:43:03 链接:http://www.cnblogs.com/xingshansi/p/6702188.html 声明:欢迎被转载,不过记得注明出处哦 ...

  4. graph Laplacian 拉普拉斯矩阵

    转自:https://www.kechuang.org/t/84022?page=0&highlight=859356,感谢分享! 在机器学习.多维信号处理等领域,凡涉及到图论的地方,相信小伙 ...

  5. 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理

    0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...

  6. R语言编程艺术# 矩阵(matrix)和数组(array)

    矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一 ...

  7. R语言编程艺术#02#矩阵(matrix)和数组(array)

    矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一 ...

  8. OpenGL投影矩阵(Projection Matrix)构造方法

    (翻译,图片也来自原文) 一.概述 绝大部分计算机的显示器是二维的(a 2D surface).在OpenGL中一个3D场景需要被投影到屏幕上成为一个2D图像(image).这称为投影变换(参见这或这 ...

  9. 【Math for ML】矩阵分解(Matrix Decompositions) (下)

    [Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...

随机推荐

  1. 获取订单的product_id 和订单的数量

    php 获取订单的product_id 和相对id的数量 <?php foreach ($val->groupResults(2) as $key2=>$val2):?> &l ...

  2. JavaScript:验证输入

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  3. 简析--Java中常见的一些关键字的解析

    在Java开发中我们经常会用到一些关键字,关键字的定义很有意思"Java事先定义好的,具有特殊含义的单词",那么我们怎么来用好关键字呢?下面我们对一些常见的关键字进行分析和比较; ...

  4. zTree的核心处理逻辑

    zTree 是一个前端树形结构的插件. 使用起来很简单,我们重点关注一下插件的核心代码. 首先,zTree需要如下的数据结构: let areaData = [ { "id": & ...

  5. #leetcode刷题之路26-删除排序数组中的重复项

    给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度.不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成. 示例 1: ...

  6. 背景qwq

  7. Python常用的数据类型

    Python常用的数据类型有很多,今天暂时介绍这三种,int(整数类型).str(字符串).bool(布尔类型)一.int(整数类型)1.不带小数的,integer 的缩写,常用于数据的计算或者大小的 ...

  8. MySQL数据库查看数据表占用空间大小和记录数

    MySQL数据库中每个表占用的空间.表记录的行数的话,可以打开MySQL的 information_schema 数据库.在该库中有一个 TABLES 表,这个表主要字段分别是: TABLE_SCHE ...

  9. python3 练习题100例 (二十四)打印完数

    完数:一个数如果恰好等于它的因子之和,这个数就称为"完数".例如 6 = 1+2+3. 题目内容: 输入一个正整数n(n<1000),输出1到n之间的所有完数(包括n). 输 ...

  10. 初识python 面向对象

    what the f**k!!这个知识点学不好的最大元凶就是,我还单身??? python基础(四): 面向对象的三个特点: 封装,继承,多态 类: 对象是面向对象编程的核心,在使用对象的过程中,为了 ...