Celery 大量任务 分发
Celery是由Python开发的一个简单、灵活、可靠的处理大量任务的分发系统,它不仅支持实时处理也支持任务调度。

- user:用户程序,用于告知celery去执行一个任务。
- broker: 存放任务(依赖RabbitMQ或Redis,进行存储)
- worker:执行任务
celery需要rabbitMQ、Redis、Amazon SQS、Zookeeper(测试中) 充当broker来进行消息的接收,并且也支持多个broker和worker来实现高可用和分布式。http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html
Celery version 4.0 runs on
Python ❨2.7, 3.4, 3.5❩
PyPy ❨5.4, 5.5❩
This is the last version to support Python 2.7, and from the next version (Celery 5.x) Python 3.5 or newer is required. If you’re running an older version of Python, you need to be running an older version of Celery: Python 2.6: Celery series 3.1 or earlier.
Python 2.5: Celery series 3.0 or earlier.
Python 2.4 was Celery series 2.2 or earlier. Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.
版本和要求
环境准备:
- 安装rabbitMQ或Redis
见:http://www.cnblogs.com/wupeiqi/articles/5132791.html - 安装celery
pip3 install celery
快速上手
import time
from celery import Celery app = Celery('tasks', broker='redis://192.168.10.48:6379', backend='redis://192.168.10.48:6379') @app.task
def xxxxxx(x, y):
time.sleep(10)
return x + y
s1.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from s1 import xxxxxx # 立即告知celery去执行xxxxxx任务,并传入两个参数
result = xxxxxx.delay(4, 4)
print(result.id)
s2.py
from celery.result import AsyncResult
from s1 import app async = AsyncResult(id="f0b41e83-99cf-469f-9eff-74c8dd600002", app=app) if async.successful():
result = async.get()
print(result)
# result.forget() # 将结果删除
elif async.failed():
print('执行失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
s3.py
执行 s1.py 创建worker(终端执行命令):
注释: 要在项目目录里执行《 在windows是不支持这个命令得 要安装 pip3 install eventle》在执行得时候
celery worker -A s1 -l info -P eventlet # 在windows 下执行的命令
celery worker -A s1 -l info
执行 s2.py ,创建一个任务并获取任务ID:
python3 s2.py
执行 s3.py ,检查任务状态并获取结果:
python3 s3.py
多任务结构
pro_cel
├── celery_tasks# celery相关文件夹
│ ├── celery.py # celery连接和配置相关文件
│ └── tasks.py # 所有任务函数
├── check_result.py # 检查结果
└── send_task.py # 触发任务
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from celery import Celery celery = Celery('xxxxxx',
broker='redis://192.168.0.111:6379',
backend='redis://192.168.0.111:6379',
include=['celery_tasks.tasks']) # 时区
celery.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
celery.conf.enable_utc = False
pro_cel/celery_tasks/celery
#!/usr/bin/env python
# -*- coding:utf-8 -*- import time
from .celery import celery @celery.task
def xxxxx(*args, **kwargs):
time.sleep(5)
return "任务结果" @celery.task
def hhhhhh(*args, **kwargs):
time.sleep(5)
return "任务结果"
pro_cel/celery_tasks/tasks.py
#!/usr/bin/env python
# -*- coding:utf-8 -*- from celery.result import AsyncResult
from celery_tasks.celery import celery async = AsyncResult(id="ed88fa52-11ea-4873-b883-b6e0f00f3ef3", app=celery) if async.successful():
result = async.get()
print(result)
# result.forget() # 将结果删除
elif async.failed():
print('执行失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
pro_cel/check_result.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import celery_tasks.tasks # 立即告知celery去执行xxxxxx任务,并传入两个参数
result = celery_tasks.tasks.xxxxx.delay(4, 4) print(result.id)
pro_cel/send_task.py
更多配置:http://docs.celeryproject.org/en/latest/userguide/configuration.html
定时任务
1. 设定时间让celery执行一个任务
import datetime
from celery_tasks.tasks import xxxxx
"""
from datetime import datetime v1 = datetime(2017, 4, 11, 3, 0, 0)
print(v1) v2 = datetime.utcfromtimestamp(v1.timestamp())
print(v2) """
ctime = datetime.datetime.now()
utc_ctime = datetime.datetime.utcfromtimestamp(ctime.timestamp()) s10 = datetime.timedelta(seconds=10)
ctime_x = utc_ctime + s10 # 使用apply_async并设定时间
result = xxxxx.apply_async(args=[1, 3], eta=ctime_x)
print(result.id)
2. 类似于contab的定时任务
"""
celery beat -A proj
celery worker -A proj -l info """
from celery import Celery
from celery.schedules import crontab app = Celery('tasks', broker='amqp://47.98.134.86:5672', backend='amqp://47.98.134.86:5672', include=['proj.s1', ])
app.conf.timezone = 'Asia/Shanghai'
app.conf.enable_utc = False app.conf.beat_schedule = {
# 'add-every-10-seconds': {
# 'task': 'proj.s1.add1',
# 'schedule': 10.0,
# 'args': (16, 16)
# },
'add-every-12-seconds': {
'task': 'proj.s1.add1',
'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
'args': (16, 16)
},
}
注:如果想要定时执行类似于crontab的任务,需要定制 Scheduler来完成。
Flask中应用Celery
pro_flask_celery/
├── app.py
├── celery_tasks
├── celery.py # 必须得有一个 celery.py的文件 这里放连接
└── tasks.py
#!/usr/bin/env python
# -*- coding:utf-8 -*- from flask import Flask
from celery.result import AsyncResult from celery_tasks import tasks
from celery_tasks.celery import celery app = Flask(__name__) TASK_ID = None @app.route('/')
def index():
global TASK_ID
result = tasks.xxxxx.delay()
# result = tasks.task.apply_async(args=[1, 3], eta=datetime(2018, 5, 19, 1, 24, 0))
TASK_ID = result.id return "任务已经提交" @app.route('/result')
def result():
global TASK_ID
result = AsyncResult(id=TASK_ID, app=celery)
if result.ready():
return result.get()
return "xxxx" if __name__ == '__main__':
app.run()
app.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from celery import Celery
from celery.schedules import crontab celery = Celery('xxxxxx',
broker='redis://192.168.10.48:6379',
backend='redis://192.168.10.48:6379',
include=['celery_tasks.tasks']) # 时区
celery.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
celery.conf.enable_utc = False
celery_tasks/celery.py
#!/usr/bin/env python
# -*- coding:utf-8 -*- import time
from .celery import celery @celery.task
def hello(*args, **kwargs):
print('执行hello')
return "hello" @celery.task
def xxxxx(*args, **kwargs):
print('执行xxxxx')
return "xxxxx" @celery.task
def hhhhhh(*args, **kwargs):
time.sleep(5)
return "任务结果"
celery_task/tasks.py
春生Flask中应用Celery
from flask import Flask,render_template,request,redirect
import time
from celery_tasks import tasks
from celery.result import AsyncResult
from celery_tasks.celery import cel app = Flask(__name__) GOODS = [
# {'title':'商品名称','pirce':100,'ticket':'7ec48f84-7160-4c1d-bb78-9c9327f7a978'}
] @app.route('/index')
def index():
return render_template('index.html',goods = GOODS) @app.route('/add',methods=['GET','POST'])
def add():
if request.method == "GET":
return render_template('add.html',goods = GOODS)
title = request.form.get('title')
price = request.form.get('price')
# 处理业务逻辑
# 耗时 1分钟 # 立即交给broker去执行
result = tasks.x1.delay(1,8) # 去触发 函数 result.id 拿到一个 字符串凭证 # 10s之后,broker才开始执行
import datetime
# 可以 t = "2018-8-8"
ctime = datetime.datetime.now() # 获取当前时间
utc_ctime = datetime.datetime.utcfromtimestamp(ctime.timestamp()) # 当前时间转换成UTC时间
ctime_x = utc_ctime + datetime.timedelta(seconds=10) # 时间 utc时间 seconds=10 ----就是当前时间的10秒后执行 result = tasks.x1.apply_async(args=[1, 8], eta=ctime_x) # apply_async 是 GOODS.append({'title':title,'price':price,'ticket':result.id}) return redirect('/index') @app.route('/detail')
def detail():
ticket = request.args.get('ticket')
result = AsyncResult(id=ticket, app=cel)
if result.successful():
val = result.get()
return "执行完成,结果:%s" %val
else:
return '正在处理中...' if __name__ == '__main__':
app.run()
app.py
from celery import Celery
from celery.schedules import crontab cel = Celery('tasks', # 是一个名字
broker='redis://:beta@140.143.227.206:8888/0', # 放任务
backend='redis://:beta@140.143.227.206:8888/0', # 取结果
include=['celery_tasks.tasks','celery_tasks.xxx']
)
# 如果需要 每天都要执行的 任务之前 要 执行这个 celery beat -A celery_tasks
cel.conf.beat_schedule = {
# 'add-every-10-seconds': {
# 'task': 'celery_tasks.tasks.x2', # 找到 那个函数
# 'args': (98, 10), # 给 x2 传参数
# 'schedule': 10.0, # 每10秒执行下这个任务
# },
'add-every-12-seconds': {
'task': 'celery_tasks.tasks.x2',
'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4), # month_of_year = 月 day_of_month = 日 hour = 时 minute = 分
'args': (26, 16)
},
}
celery.py
import time
from .celery import cel
from celery import shared_task @shared_task
def x1(x, y):
time.sleep(10)
return x + y @cel.task
def x2(x, y):
time.sleep(5)
return x - y @cel.task
def x3(x, y):
time.sleep(2)
return x * y
tasks.py
Celery 大量任务 分发的更多相关文章
- django的crontab
最近需要考虑如何在django环境中跑定时任务. 这个在 stackoverflow 也有对应的 讨论 , 方法也有不少, 这边简单尝试和总结下. 假设我们现在的定期任务就是睡眠 n 秒, 然后往 ...
- python celery任务分发
<div id="cnblogs_post_body" class="blogpost-body"><p>Celery是由Python开 ...
- 异步任务分发模块Celery
Celery简介 Celery是一个功能完备即插即用的任务队列.它使得我们不需要考虑复杂的问题,使用非常简单. celery适用异步处理问题,当遇到发送邮件.或者文件上传, 图像处理等等一些比较耗时的 ...
- 异步分发任务celery
Celery简介 Celery是一个功能完备即插即用的任务队列.它使得我们不需要考虑复杂的问题,使用非常简单. celery适用异步处理问题,当遇到发送邮件.或者文件上传, 图像处理等等一些比较耗时的 ...
- celery 框架
转自:http://www.cnblogs.com/forward-wang/p/5970806.html 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据 ...
- Celery 框架学习笔记
在学习Celery之前,我先简单的去了解了一下什么是生产者消费者模式. 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是 ...
- celery 学习笔记 01-介绍
celery 学习笔记 01-介绍 celery 是 python 中的常用的任务队列框架,经常用于异步调用.后台任务等工作.celery 本身以 python 写,但协议可在不同的语言中实现,其它语 ...
- 如何让celery接受定制的参数
背景介绍 最近的一个项目使用到celery结算订单,使用celery的确很方便.但是复杂的内部框架导致了需要传人大量的参数例如数据库配置文件等.下面先来看看我仿照官网写的代码.所有代码都放到githu ...
- Python 任务队列 Celery
一. celery 简介 Celery 是一个专注于实时处理和任务调度的分布式任务队列, 同时提供操作和维护分布式系统所需的工具.. 所谓任务就是消息, 消息中的有效载荷中包含要执行任务需要的全部数据 ...
随机推荐
- LoadRunner 关联和集合点、检查点
1)关联的定义 很多时候,当时录完之后,没有问题.过一段时间再跑脚本,就不会成功.比如session,过期了,再一次使用,就会出错.这个时候,需要在每次访问的时候动态的拿到session,这种情况就需 ...
- SpringBoot23 分模块开发
1 开发环境说明 JDK:1.8 MAVEN:3.5 IDEA:2017.2.5 SpringBoot:2.0.3.RELEASE 2 创建SpringBoot项目 2.1 项目信息 2.2 添加项目 ...
- Python3.7安装PyQt5的方法
一.系统环境 操作系统:Win7 64位 Python Version:3.7 二.安装参考 方法1:pip install PyQt5 方法2:下载whl安装包安装 a.下载网址:https://p ...
- Linux pkg-config命令
一.简介 pkg-config用来检索系统中安装库文件的信息.典型的是用作库的编译和连接. 二.实例 http://blog.chinaunix.net/uid-20595934-id-1918368 ...
- OVS的初始配置
1.去掉bridge模块,为下面用OVS的模块奠定基础 rmmod bridge .insmod datapath/linux/openvswitch_mod.ko .insmod datapath/ ...
- C#中GUID的生成格式(Guid.ToString方法 )
GUID 是微软对UUID这个标准的实现.UUID是由开放软件基金会(OSF)定义的.UUID还有其它各种实现,不止GUID一种 public string ToString( string ...
- 应用Bundle捆绑压缩技术
从MVC4开始,我们就发现,项目中对Global.asax进行了优化,将原来在MVC3中使用的代码移到了[App_Start]文件夹下,而Global.asax只负责初始化.其中的BundleConf ...
- Android AIDL--进程间通信
一 AIDL 是什么 AIDL(Android 接口定义语言) 是 Android 提供的一种进程间通信 (IPC) 机制. 我们可以利用它定义客户端与服务使用进程间通信 (IPC) 进行相互通信时都 ...
- 关于MVC刷新页面会两次请求页面的原因
遇到这个奇葩的问题刚开始关注点全放在后台了 ,以为后台哪个地方存在问题,找了半天一无所获之后才开始把问题关注点移到前端,通过不断的注释前台代码, 终于发现了问题,没想到是这个js导致的问题 因为的Vi ...
- 第一篇 Python的数据类型
Python的标准数据类型有五种: (1)字符串 (2)数字(包括整数,浮点数,布尔,复数) (3)列表(list) (4)元组(tuple) (5)字典(dict) 注:使用type函数可以查看对象 ...