std::unordered_map

template < class Key,                                    // unordered_map::key_type
class T, // unordered_map::mapped_type
class Hash = hash<Key>, // unordered_map::hasher
class Pred = equal_to<Key>, // unordered_map::key_equal
class Alloc = allocator< pair<const Key,T> > // unordered_map::allocator_type
> class unordered_map;

Unordered Map

Unordered maps are associative containers that store elements formed by the combination of a key value and a mapped value, and which allows for fast retrieval of individual elements based on their keys.

In an unordered_map, the key value is generally used to uniquely identify the element, while the mapped value is an object with the content associated to this key. Types of key and mapped value may differ.

Internally, the elements in the unordered_map are not sorted in any particular order with respect to either their key or mapped values, but organized into buckets(桶) depending on their hash values to allow for fast access to individual elements directly by their key values (with a constant average time complexity on average).

unordered_map containers are faster than map containers to access individual elements by their key, although they are generally less efficient for range iteration through a subset of their elements.

Unordered maps implement the direct access operator (operator[]) which allows for direct access of the mapped value using its key value as argument.

Iterators in the container are at least forward iterators.

Container properties

  • Associative Elements in associative containers are referenced by their key and not by their absolute position in the container.
  • Unordered Unordered containers organize their elements using hash tables that allow for fast access to elements by their key.
  • Map Each element associates a key to a mapped value: Keys are meant to identify the elements whose main content is the mapped value.
  • Unique keys No two elements in the container can have equivalent keys.
  • Allocator-aware The container uses an allocator object to dynamically handle its storage needs.

Template parameters

  • Key

    Type of the key values. Each element in an unordered_map is uniquely identified by its key value.

    Aliased as member type unordered_map::key_type.

  • T

    Type of the mapped value. Each element in an unordered_map is used to store some data as its mapped value.

    Aliased as member type unordered_map::mapped_type. Note that this is not the same as unordered_map::value_type (see below).

  • Hash

    A unary(一元) function object type that takes an object of type key type as argument and returns a unique value of type size_t based on it. This can either be a class implementing a function call operator or a pointer to a function (see constructor for an example). This defaults to hash, which returns a hash value with a probability of collision approaching 1.0/std::numeric_limits<size_t>::max().

    The unordered_map object uses the hash values returned by this function to organize its elements internally, speeding up the process of locating individual elements.

    Aliased as member type unordered_map::hasher.

  • Pred

    A binary predicate(断言) that takes two arguments of the key type and returns a bool. The expression pred(a,b), where pred is an object of this type and a and b are key values, shall return true if a is to be considered equivalent to b. This can either be a class implementing a function call operator or a pointer to a function (see constructor for an example). This defaults to equal_to, which returns the same as applying the equal-to operator (a==b).

    The unordered_map object uses this expression to determine whether two element keys are equivalent. No two elements in an unordered_map container can have keys that yield true using this predicate.

    Aliased as member type unordered_map::key_equal.

  • Alloc

    Type of the allocator object used to define the storage allocation model. By default, the allocator class template is used, which defines the simplest memory allocation model and is value-independent.

    Aliased as member type unordered_map::allocator_type.

In the reference for the unordered_map member functions, these same names (Key, T, Hash, Pred and Alloc) are assumed for the template parameters.

Iterators to elements of unordered_map containers access to both the key and the mapped value. For this, the class defines what is called its value_type, which is a pair class with its first value corresponding to the const version of the key type (template parameter Key) and its second value corresponding to the mapped value (template parameter T):

typedef pair<const Key, T> value_type;

Iterators of a unordered_map container point to elements of this value_type. Thus, for an iterator called it that points to an element of a map, its key and mapped value can be accessed respectively(分别) with:

unordered_map<Key,T>::iterator it;
(*it).first; // the key value (of type Key)
(*it).second; // the mapped value (of type T)
(*it); // the "element value" (of type pair<const Key,T>)

Naturally, any other direct access operator, such as -> or [] can be used, for example:

it->first;               // same as (*it).first   (the key value)
it->second; // same as (*it).second (the mapped value)

Member types

The following aliases are member types of unordered_map. They are widely used as parameter and return types by member functions:

member type definition notes
key_type the first template parameter (Key)
mapped_type the second template parameter (T)
value_type pair<const key_type,mapped_type>
hasher the third template parameter (Hash) defaults to: hash<key_type>
key_equal the fourth template parameter (Pred) defaults to: equal_to<key_type>
allocator_type the fifth template parameter (Alloc) defaults to: allocator<value_type>
reference Alloc::reference
const_reference Alloc::const_reference
pointer Alloc::pointer for the default allocator: value_type*
const_pointer Alloc::const_pointer for the default allocator: const value_type*
iterator a forward iterator to value_type
const_iterator a forward iterator to const value_type
local_iterator a forward iterator to value_type
const_local_iterator a forward iterator to const value_type
size_type an unsigned integral type usually the same as size_t
difference_type a signed integral type usually the same as ptrdiff_t

Member functions

  • (constructor) Construct unordered_map (public member function )
  • (destructor) Destroy unordered map (public member function)
  • operator= Assign content (public member function )

Capacity

  • empty Test whether container is empty (public member function)
  • size Return container size (public member function)
  • max_size Return maximum size (public member function)

Iterators

  • begin Return iterator to beginning (public member function)
  • end Return iterator to end (public member function)
  • cbegin Return const_iterator to beginning (public member function)
  • cend Return const_iterator to end (public member function)

Element access

  • operator[] Access element (public member function )
  • at Access element (public member function)

Element lookup

  • find Get iterator to element (public member function)
  • count Count elements with a specific key (public member function )
  • equal_range Get range of elements with specific key (public member function)

Modifiers

  • emplace Construct and insert element (public member function )
  • emplace_hint Construct and insert element with hint (public member function )
  • insert Insert elements (public member function )
  • erase Erase elements (public member function )
  • clear Clear content (public member function )
  • swap Swap content (public member function)

Buckets

  • bucket_count Return number of buckets (public member function)
  • max_bucket_count Return maximum number of buckets (public member function)
  • bucket_size Return bucket size (public member type)
  • bucket Locate element's bucket (public member function)

Hash policy

  • load_factor Return load factor (public member function)
  • max_load_factor Get or set maximum load factor (public member function )
  • rehash Set number of buckets (public member function )
  • reserve Request a capacity change (public member function)

Observers

  • hash_function Get hash function (public member type)
  • key_eq Get key equivalence predicate (public member type)
  • get_allocator Get allocator (public member function)

Non-member function overloads

  • operators (unordered_map) Relational operators for unordered_map (function template )
  • swap (unordered_map) Exchanges contents of two unordered_map containers (function template )

Code Example

#include <iostream>
#include <string>
#include <unordered_map> using namespace std; typedef unordered_map<string,string> stringmap;
typedef unordered_map<int,int> intmap; stringmap merge(stringmap a,stringmap b){
stringmap tmp(a);
tmp.insert(b.begin(),b.end());
return tmp;
} int main(int argc, char **argv)
{
stringmap first1;
stringmap first2( { {"apple","red"}, {"lemon","yellow"} } );
stringmap first3( { {"orange","orange"}, {"strawberry","red"} } );
stringmap first4( first2 );
stringmap first5( merge(first2, first3) );
stringmap first6( first5.begin(), first5.end() ); cout << "string map first6 :\n";
for( auto& x:first6 )
cout << x.first << ":" << x.second << "\n"; stringmap second = { {"house","maison"}, {"apple","pomme"}, {"tree","arbre"},
{"book","liver"}, {"door","porte"}, {"grapefruit","pamplemouse"} }; unsigned n = second.bucket_count();
cout << "\nsecond map has " << n << " buckets\n";
for( unsigned i=0; i < n; i++ ){
cout << "bucket#" << i << "contains: "<< second.bucket_size(i) << "elements: ";
for( auto it = second.begin(i); it != second.end(i); it++ ){
cout << it->first << ":" << it->second << ",";
}
cout << "\n";
} cout << "\n";
for( auto& x:second){
cout << "Element [" << x.first << ":" << x.second << "]";
cout << " is in bucket #" << second.bucket( x.first ) << "\n";
} intmap third; cout << "size: " << third.size() << "\n";
cout << "bucket_count: " << third.bucket_count() << "\n";
cout << "load_factor: " << third.load_factor() << "\n";
cout << "max_load_factor: "<< third.max_load_factor() << "\n"; /**
* Sets the number of buckets in the container to n or more.
If n is greater than the current number of buckets in the container (bucket_count), a rehash is forced. The new bucket count can either be equal or greater than n.
If n is lower than the current number of buckets in the container (bucket_count), the function may have no effect on the bucket count and may not force a rehash.
*/ third.rehash(40);
cout << "rehash bucket count: "<< third.bucket_count() << "\n"; intmap::hasher fn = third.hash_function();
cout << "int hash function: 10:" << fn(10) << "\n";
cout << "int hash function: 11:" << fn(11) << "\n"; return 0;
}

Reference

cplusplus


C++ std::unordered_map的更多相关文章

  1. C++ std::unordered_map使用std::string和char *作key对比

    最近在给自己的服务器框架加上统计信息,其中一项就是统计创建的对象数,以及当前还存在的对象数,那么自然以对象名字作key.但写着写着,忽然纠结是用std::string还是const char *作ke ...

  2. C++11中std::unordered_map的使用

    unordered map is an associative container that contains key-value pairs with unique keys. Search, in ...

  3. hashmap C++实现分析及std::unordered_map拓展

    今天想到哈希函数,好像解决冲突的只了解了一种链地址法而且也很模糊,就查了些资料复习一下 1.哈希Hash 就是把任意长度的输入,通过哈希算法,变换成固定长度的输出(通常是整型),该输出就是哈希值. 这 ...

  4. 记一个关于std::unordered_map并发访问的BUG

    前言 刷题刷得头疼,水篇blog.这个BUG是我大约一个月前,在做15445实现lock_manager的时候遇到的一个很恶劣但很愚蠢的BUG,排查 + 摸鱼大概花了我三天的时间,根本原因是我在使用s ...

  5. std::unordered_map

    map与unordered_map的区别 1.map: map内部实现了一个红黑树,该结构具有自动排序的功能,因此map内部的所有元素都是有序的,红黑树的每一个节点都代表着map的一个元素, 因此,对 ...

  6. std::unordered_map与std::map

    前者查找更快.后者自动排序,并可指定排序方式. 资料参考: https://blog.csdn.net/photon222/article/details/102947597

  7. STL: unordered_map 自定义键值使用

    使用Windows下 RECT 类型做unordered_map 键值 1. Hash 函数 计算自定义类型的hash值. struct hash_RECT { size_t operator()(c ...

  8. C++11 新特性: unordered_map 与 map 的对比

    unordered_map和map类似,都是存储的key-value的值,可以通过key快速索引到value.不同的是unordered_map不会根据key的大小进行排序, 存储时是根据key的ha ...

  9. map 与 unordered_map

    两者效率对比: #include <iostream> #include <string> #include <map> #include <unordere ...

随机推荐

  1. Go编译安装

    go编译安装: 设置环境变量 # sudo vim /etc/profile.d/go export GOROOT=/home/evescn/go export PATH=$PATH:$GOROOT/ ...

  2. 自定义DelegatingHandler为ASP.NET Web Api添加压缩与解压的功能

    HTTP协议中的压缩 Http协议中使用Accept-Encoding和Content-Encoding头来表示期望Response内容的编码和当前Request的内容编码.而Http内容的压缩其实是 ...

  3. Sql Server 2012 存储过程的调试

    [一]Sql Server 关于存储过程调试SQL2000是在查询分析器中的对象浏览器中选中需要调试的存储过程,右键----调试---输入参数开始调试.sqlserver2008中则完全不同,变成了必 ...

  4. sphinx-1.3.0扩展在pPHP 7.0.7版本编译不通过

    在这个网友也是在php7上面编译插件不通过 https://bugs.php.net/bug.php?id=71586 下php7对应的扩展文件即可 http://git.php.net/?p=pec ...

  5. JAVA-Unit02: Oracle字符串操作 、 Oracle数值操作 、 Oracle日期操作 、 空值操作

    Unit02: Oracle字符串操作 . Oracle数值操作 . Oracle日期操作 . 空值操作 DQL数据查询语言 查询语句基本由SELECT子句由FROM子句构成. SELECT子句指定要 ...

  6. 杂项:Hadoop

    ylbtech-杂项:Hadoop Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储.Ha ...

  7. Repeater,ItemDataBound事件,获取绑定列的值,给指定列添加js方法

    protected void rp_bf_ItemDataBound(object sender, RepeaterItemEventArgs e) { if (e.Item.ItemType == ...

  8. C++中结构体与类的区别 1

    转载来源:http://blog.sina.com.cn/s/blog_48f587a80100k630.html C++中的struct对C中的struct进行了扩充,它已经不再只是一个包含不同数据 ...

  9. Deep Learning 阅读笔记:Convolutional Auto-Encoders 卷积神经网络的自编码表达

    需要搭建一个比较复杂的CNN网络,希望通过预训练来提高CNN的表现. 上网找了一下,关于CAE(Convolutional Auto-Encoders)的文章还真是少,勉强只能找到一篇瑞士的文章. S ...

  10. Flask之模板之控制语句

    3.4 控制语句 常用的几种控制语句: 模板中的if控制语句 @app.route('/user') def user(): user = 'dongGe' return render_templat ...