题意

你要购买m种物品各一件,一共有n家商店,你到第i家商店的路费为d[i],在第i家商店购买第j种物品的费用为c[i][j],求最小总费用。

\(n \leq 100,m \leq 16\)

分析

状压裸题,看题意和数据范围就能想出用\(f(i,s)\)前\(i\)个商店买了状态\(s\)的最小花费。

然后是状态转移的一点问题,对每个商店枚举子集会超时,需要快速子集和变换类似的方法来内部转移。

方法就是用每个物品松弛一遍,刷表法。

转移的证明

考虑归纳证明。

首先从前一层转移过来本身就是最优的肯定是合法的。

其次每个状态会向后转移,对后面的状态肯定存在一条最优路径,而这种转移隐式包含了这条最优路径。

所以是正确的。

时间复杂度\(O(n m 2 ^m)\)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
rg T data=0;
rg int w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
template<class T>T read(T&x)
{
return x=read<T>();
}
using namespace std;
typedef long long ll; co int MAXN=101,MAXM=16;
int n,m;
int d[MAXN],c[MAXN][MAXM];
int f[MAXN][1<<MAXM]; int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n);read(m);
for(int i=1;i<=n;++i)
{
read(d[i]);
for(int j=0;j<m;++j)
read(c[i][j]);
}
memset(f,0x3f,sizeof f);
f[0][0]=0;
for(int i=1;i<=n;++i)
{
for(int j=0;j<1<<m;++j)
f[i][j]=f[i-1][j]+d[i];
for(int j=0;j<1<<m;++j)
for(int k=0;k<m;++k)
if(~j&(1<<k))
f[i][j|(1<<k)]=min(f[i][j|(1<<k)],f[i][j]+c[i][k]);
for(int j=0;j<1<<m;++j)
f[i][j]=min(f[i][j],f[i-1][j]);
}
printf("%d\n",f[n][(1<<m)-1]);
return 0;
}

BZOJ4145 [AMPPZ2014]The Prices的更多相关文章

  1. bzoj4145 AMPPZ2014 The Prices 状压dp

    这个题.......很可以,很小清晰......反正正经的东西我都没想到:重点在于——————我不会处理那个多出来的路费所以当时我就骚骚的弄了一颗树包状压其实这是一个类01背包的状压在每个状态用01背 ...

  2. bzoj4145 [AMPPZ2014]The Prices(状压dp)

    Description 你要购买m种物品各一件,一共有n家商店,你到第i家商店的路费为d[i],在第i家商店购买第j种物品的费用为c[i][j], 求最小总费用. Input 第一行包含两个正整数n, ...

  3. bzoj4145 [AMPPZ2014]The Prices 状压 DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4145 题解 好像这道题有不少方法呢. ...谁叫这道题有点简单,所以方法多呗. 我的方法: 求 ...

  4. 【BZOJ4145】[AMPPZ2014]The Prices 状压DP

    [BZOJ4145][AMPPZ2014]The Prices Description 你要购买m种物品各一件,一共有n家商店,你到第i家商店的路费为d[i],在第i家商店购买第j种物品的费用为c[i ...

  5. BZOJ 4145: [AMPPZ2014]The Prices( 状压dp + 01背包 )

    我自己只能想出O( n*3^m )的做法....肯定会T O( nm*2^m )做法: dp( x, s ) 表示考虑了前 x 个商店, 已买的东西的集合为s. 考虑转移 : 先假设我们到第x个商店去 ...

  6. BZOJ.4145.[AMPPZ2014]The Prices(状压DP)

    BZOJ 比较裸的状压DP. 刚开始写麻烦惹... \(f[i][s]\)表示考虑了前\(i\)家商店,所买物品状态为\(s\)的最小花费. 可以写求一遍一定去\(i\)商店的\(f[i]\)(\(f ...

  7. BZOJ 4145 [AMPPZ2014] The Prices 解题报告

    感觉也是一个小清新题.. 我们考虑设立状态 $Dp[i][s]$ 表示考虑了前 $i$ 个商店后,购买状态为 $s$ 的最小花费. 转移的话就枚举每个商店 $i$,首先令: $$Dp[i][s] = ...

  8. [BZOJ] 4145: [AMPPZ2014]The Prices

    设\(f[S][i]\)表示考虑到第\(i\)家店,已经买了集合\(S\)内的物品 一个朴素的想法是枚举子集转移 \[ f[S][i]=\min\{f[T][i-1]+cost[S\oplus T][ ...

  9. bzoj 4145: [AMPPZ2014]The Prices【状压dp】

    设f[s][i]为已经买了集合s,当前在商店i,转移的话就是枚举新买的物品,两种情况,一种是在原商店买,不用付路费,另一种是从其他商店过来,这种再枚举从那个商店过来是不行的,记一个mn[s]为已经买了 ...

随机推荐

  1. Excel如何关闭进程

    在使用Microsoft.Interop.Excel对象的时候_application.Quit()并不能彻底关闭Excel进程,原因是没有释放掉非托管组建的引用. System.Runtime.In ...

  2. vim 删除多列

    比如想删除一个文件的1-1000行的前3列: gg #到文件首ctrl+v #可视块模式999j,2l #注意是小写的J和L(方向键向下和向右也可以)d #删除

  3. Linux命令详解-date

    在linux环境中,不管是编程还是其他维护,时间是必不可少的,也经常会用到时间的运算,熟练运用date命令来表示自己想要表示的时间,肯定可以给自己的工作带来诸多方便. 1.命令格式:   date [ ...

  4. ansible入门四(Ansible playbook基础组件介绍)

    本节内容: ansible playbook介绍 ansible playbook基础组件 playbook中使用变量 一.ansible playbook介绍 playbook是由一个或多个“pla ...

  5. spring项目加载不出来静态资源

    方法1: 拦截器中增加针对静态资源不进行过滤(涉及spring-mvc.xml) <!-- 添加注解驱动 --> <mvc:annotation-driven/> <!- ...

  6. Nginx配置请求转发location及rewrite规则

    一个示例: location = / { # 精确匹配 / ,主机名后面不能带任何字符串 [ configuration A ] } location / { # 因为所有的地址都以 / 开头,所以这 ...

  7. Spring整合CXF发布及调用WebService

    这几天终于把webService搞定,下面给大家分享一下发布webService和调用webService的方法 添加jar包 (官方下载地址:http://cxf.apache.org/downlo ...

  8. 慕课网-Linux达人养成计划学习笔记

    mkdir -p [目录]创建目录-p 递归创建ls 查看当前目录下的文件和目录等其他文件 cd [目录]命令英文愿意:change directory切换所在目录简化操作cd ~ 进入当前用户的家目 ...

  9. Django部署时为什么要用 uWSGI与 Nginx? 以及 WSGI,uwsgi等协议

    Django框架的服务器架构一般是 Nginx + uWSGI + Django (1)一些基本概念 1 WSGI协议,uwsgi协议 WSGI协议(通讯协议):Python用于Web开发的协议(用于 ...

  10. Android 贝塞尔曲线解析

    相信很多同学都知道"贝塞尔曲线"这个词,我们在很多地方都能经常看到.利用"贝塞尔曲线"可以做出很多好看的UI效果,本篇博客就让我们一起学习"贝塞尔曲线 ...