BZOJ1407 NOI2002 Savage 【Exgcd】
BZOJ1407 NOI2002 Savage
Description
Input
第1行为一个整数N(1<=N<=15),即野人的数目。
第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值。
(1<=Ci,Pi<=100, 0<=Li<=10^6 )
Output
仅包含一个数M,即最少可能的山洞数。输入数据保证有解,且M不大于10^6。
Sample Input
3
1 3 4
2 7 3
3 2 1
Sample Output
6
//该样例对应于题目描述中的例子。
首先看到了M<=1e6,然后就可以暴力枚举M的值
然后确定了M的值之后,我们对于两个野人i和j可以列出
(Ci+x∗pi)−(Cj+x∗pj)=y∗M" role="presentation">(Ci+x∗pi)−(Cj+x∗pj)=y∗M(Ci+x∗pi)−(Cj+x∗pj)=y∗M
当x≤min(li,lj)" role="presentation">x≤min(li,lj)x≤min(li,lj)的时候就不成立(会相遇)
求出x的最小整数解判断一下就行了
#include<bits/stdc++.h>
using namespace std;
#define N 20
#define M 1000000
int n;
int c[N],p[N],l[N];
void exgcd(int a,int b,int &x,int &y){
if(!b)x=1,y=0;
else{
exgcd(b,a%b,y,x);
y-=(a/b)*x;
}
}
int gcd(int a,int b){
if(!b)return a;
return gcd(b,a%b);
}
bool judge(int i,int j,int s){
int anow=p[i]-p[j],bnow=s,cnow=c[j]-c[i];
int x,y,d=gcd(anow,bnow);
if(cnow%d)return 1;
exgcd(anow,bnow,x,y);
int w=abs(s/d);
x=((x*cnow/d)%w+w)%w;
if(x<=l[i]&&x<=l[j])return 0;
return 1;
}
bool check(int s){
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(!judge(i,j,s))return 0;
return 1;
}
int main(){
int down=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d%d",&c[i],&p[i],&l[i]),down=max(down,c[i]);
for(int i=down;i<=M;i++)
if(check(i)){printf("%d",i);return 0;}
return 0;
}
BZOJ1407 NOI2002 Savage 【Exgcd】的更多相关文章
- BZOJ1407 [Noi2002]Savage 【扩展欧几里得】
题目链接 BZOJ1407 题解 枚举\(m\)用扩欧判即可 #include<algorithm> #include<iostream> #include<cstrin ...
- 【exgcd】卡片
卡片 题目描述 你有一叠标号为1到n的卡片.你有一种操作,可以重排列这些卡片,操作如下:1.将卡片分为前半部分和后半部分.2.依次从后半部分,前半部分中各取一张卡片,放到新的序列中.例如,对卡片序列( ...
- 【数学 exgcd】bzoj1407: [Noi2002]Savage
exgcd解不定方程时候$abs()$不能乱加 Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...
- BZOJ1407: [Noi2002]Savage exgcd
Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴 ...
- bzoj 1407: [Noi2002]Savage【扩展欧几里得+中国剩余定理】
首先答案不会很大,所以枚举答案m,于是把问题转为了判定: 关于如何判定: 首先题目中虽然没说但是数据是按照初始洞穴编号排的序,所以并不用自己重新再排 假设当前答案为m,相遇时间为x,野人i和j,那么可 ...
- Codeforces1106F 【BSGS】【矩阵快速幂】【exgcd】
首先矩阵快速幂可以算出来第k项的指数,然后可以利用原根的性质,用bsgs和exgcd把答案解出来 #include<bits/stdc++.h> using namespace std; ...
- 洛谷 P4774 / loj 2721 [NOI2018] 屠龙勇士 题解【同余】【exgcd】【CRT】
推导过程存在漏洞+exCRT板子没打熟于是期望得分÷实际得分=∞? 题目描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 \(1\sim n\) 顺序杀掉 \(n\ ...
- 【9.2校内测试】【开学祭】【exgcd】【树规(背包】【模拟】
比较裸的$exgcd$的应用? $exgcd$可以算出在$x$和$y$分别是最小正整数时的解.注意在这里因为有$a(x+\frac{b}{d})+b(y-\frac{a}{d})=c$,$d=gcd( ...
- bzoj 1477: 青蛙的约会【exgcd】
列出式子是\( mx+s1\equiv nx+s2(mod L) (m-n)x+Ly=s2-s1 \),注意如果n-m<0的话,就把ac都乘-1变成正数,然后exgcd求解,最后注意x为负的话要 ...
随机推荐
- vue的seo方案 prerender-seo-plugin
利用vue cli 3.0安装脚手架.记住:勾选vue-router. 在vue.config.js里添加配置: 2, var path = require('path') 3, const Prer ...
- Vuex访问状态对象的方法
除了<Vuex最基本样例>中的方法外,还有两种方法访问状态对象state: 只需要改app.vue文件 方法一:引入computed <template> <div id ...
- C和C#两种方式实现邮件的简单接收
本文的主要内容是通过两种方式实现简单邮件的接收,一种方式是通过C语言实现,另一种是通过C#实现的, 两种方式在实现上有许多的不同之处,但是本质上都是一样的. 一,C语言实现方式 C语言接收邮件的步骤: ...
- Solr学习总结 Solr的安装与配置
接着前一篇,这里总结下Solr的安装与配置 1.准备 1.安装Java8 和 Tomcat9 ,java和tomcat 的安装这里不再重复.需要注意的是这两个的版本兼容问题.貌似java8 不支持,t ...
- synchornized实现原理
synchronized是基于Monitor来实现同步的. Monitor 的工作机理: 线程进入同步方法中. 为了继续执行临界区代码,线程必须获取 Monitor 锁.如果获取锁成功,将成为该监视者 ...
- Angular2 中的依赖包详解
转自:http://blog.csdn.net/feiying008/article/details/53033704 目录 dependencies 和 devDependencies depend ...
- IEnumerable<T>作为方法返回值类型——建议通过yield return返回
若IEnumerable<T>作为方法返回值的类型,则建议使用“迭代”模式(yield return) private IEnumerable<TwoLevelTreeNodeVie ...
- Log4j详细设置说明
1. 动态的改变记录级别和策略,即修改log4j.properties,不需要重启Web应用,这需要在web.xml中设置一下.2. 把log文件定在 /WEB-INF/logs/ 而不需要写绝对路径 ...
- 【MySQL】日期与字符串间的相互转换
字符串转日期 下面将讲述如何在MySQL中把一个字符串转换成日期: 背景:rq字段信息为:20100901 无需转换的: SELECT * FROM tairlist_day WHERE rq> ...
- 让你的ansible飞起来
一.SSH Multiplexing 1 配置 vim /etc/ssh/ssh_config Host * GSSAPIAuthentication yes # If this option is ...