BZOJ1407 NOI2002 Savage


Description

Input

第1行为一个整数N(1<=N<=15),即野人的数目。

第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值。

(1<=Ci,Pi<=100, 0<=Li<=10^6 )

Output

仅包含一个数M,即最少可能的山洞数。输入数据保证有解,且M不大于10^6。

Sample Input

3

1 3 4

2 7 3

3 2 1

Sample Output

6

//该样例对应于题目描述中的例子。


首先看到了M<=1e6,然后就可以暴力枚举M的值

然后确定了M的值之后,我们对于两个野人i和j可以列出

(Ci+x∗pi)−(Cj+x∗pj)=y∗M" role="presentation">(Ci+x∗pi)−(Cj+x∗pj)=y∗M(Ci+x∗pi)−(Cj+x∗pj)=y∗M

当x≤min(li,lj)" role="presentation">x≤min(li,lj)x≤min(li,lj)的时候就不成立(会相遇)

求出x的最小整数解判断一下就行了


#include<bits/stdc++.h>
using namespace std;
#define N 20
#define M 1000000
int n;
int c[N],p[N],l[N];
void exgcd(int a,int b,int &x,int &y){
if(!b)x=1,y=0;
else{
exgcd(b,a%b,y,x);
y-=(a/b)*x;
}
}
int gcd(int a,int b){
if(!b)return a;
return gcd(b,a%b);
}
bool judge(int i,int j,int s){
int anow=p[i]-p[j],bnow=s,cnow=c[j]-c[i];
int x,y,d=gcd(anow,bnow);
if(cnow%d)return 1;
exgcd(anow,bnow,x,y);
int w=abs(s/d);
x=((x*cnow/d)%w+w)%w;
if(x<=l[i]&&x<=l[j])return 0;
return 1;
}
bool check(int s){
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(!judge(i,j,s))return 0;
return 1;
}
int main(){
int down=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d%d",&c[i],&p[i],&l[i]),down=max(down,c[i]);
for(int i=down;i<=M;i++)
if(check(i)){printf("%d",i);return 0;}
return 0;
}

BZOJ1407 NOI2002 Savage 【Exgcd】的更多相关文章

  1. BZOJ1407 [Noi2002]Savage 【扩展欧几里得】

    题目链接 BZOJ1407 题解 枚举\(m\)用扩欧判即可 #include<algorithm> #include<iostream> #include<cstrin ...

  2. 【exgcd】卡片

    卡片 题目描述 你有一叠标号为1到n的卡片.你有一种操作,可以重排列这些卡片,操作如下:1.将卡片分为前半部分和后半部分.2.依次从后半部分,前半部分中各取一张卡片,放到新的序列中.例如,对卡片序列( ...

  3. 【数学 exgcd】bzoj1407: [Noi2002]Savage

    exgcd解不定方程时候$abs()$不能乱加 Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...

  4. BZOJ1407: [Noi2002]Savage exgcd

    Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴 ...

  5. bzoj 1407: [Noi2002]Savage【扩展欧几里得+中国剩余定理】

    首先答案不会很大,所以枚举答案m,于是把问题转为了判定: 关于如何判定: 首先题目中虽然没说但是数据是按照初始洞穴编号排的序,所以并不用自己重新再排 假设当前答案为m,相遇时间为x,野人i和j,那么可 ...

  6. Codeforces1106F 【BSGS】【矩阵快速幂】【exgcd】

    首先矩阵快速幂可以算出来第k项的指数,然后可以利用原根的性质,用bsgs和exgcd把答案解出来 #include<bits/stdc++.h> using namespace std; ...

  7. 洛谷 P4774 / loj 2721 [NOI2018] 屠龙勇士 题解【同余】【exgcd】【CRT】

    推导过程存在漏洞+exCRT板子没打熟于是期望得分÷实际得分=∞? 题目描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 \(1\sim n​\) 顺序杀掉 \(n​\ ...

  8. 【9.2校内测试】【开学祭】【exgcd】【树规(背包】【模拟】

    比较裸的$exgcd$的应用? $exgcd$可以算出在$x$和$y$分别是最小正整数时的解.注意在这里因为有$a(x+\frac{b}{d})+b(y-\frac{a}{d})=c$,$d=gcd( ...

  9. bzoj 1477: 青蛙的约会【exgcd】

    列出式子是\( mx+s1\equiv nx+s2(mod L) (m-n)x+Ly=s2-s1 \),注意如果n-m<0的话,就把ac都乘-1变成正数,然后exgcd求解,最后注意x为负的话要 ...

随机推荐

  1. NPM Scripts 2 -- rimraf copyfiles imagemin usemin htmlmin uglifyjs

    NPM Scripts Part 2 Objectives and Outcomes In this exercise you will learn to build a distribution f ...

  2. JavaScript高级程序设计-读书笔记(6)

    第20章 JSON JSON是一个轻量级的数据格式,可以简化表示复杂数据结构的工作量 JSON的语法可以表示一下三种类型的值 l        简单值:使用与JavaScript相同的语法,可以在JS ...

  3. Js上下左右无缝隙滚动代码

    转载:http://www.cnblogs.com/chenjt/p/4193464.html 主要用到dom.offsetWidth 这个表示实际的宽度. dom.scrollLeft 这个表示这个 ...

  4. bzoj1009: [HNOI2008]GT考试 ac自动机+矩阵快速幂

    https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9 ...

  5. SpringAOP源码分析总结

    1.Advisor(增强器):充当Advice和Pointcut的适配器,类似使用Aspect的@Aspect注解的类(前一章节所述).一般有advice和pointcut属性. 祖先接口为org.s ...

  6. HDU 4669 Mutiples on a circle 不知道该归为哪一类。

    题意:给你N个珠宝和一个K,每个珠宝上面都有数字,这个珠宝做成项链,把珠宝上的数字拼起来如果可以整除掉K,那么久说这个数字为wonderful value,问你有多少种方案可以组成WONDERFUL ...

  7. Linux下安装Nginx教程

    什么是Nginx? Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器,在高连接并发的情况下N ...

  8. CF911B

    题解: 枚举一下x x<=min(a,b) 然后判断a/x+b/x是否>=x 代码: #include<bits/stdc++.h> using namespace std; ...

  9. python金融分析项目

    1.进入ipython: C:\Users\Administrator>ipython Python (v3. , ::) [MSC v. bit (AM D64)] Type 'copyrig ...

  10. LINUX系统下PXE网络安装虚拟机

    PXE(preboot execute environment),预启动执行环境.由于安装系统的时候,有时候是大批量的安装:这时使用磁盘或虚拟机进行单个安装,效率太差:所以我们开始使用PXE网络安装L ...