C++ STL 全排列函数详解
一、概念
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。如果这组数有n个,那么全排列数为n!个。
比如a,b,c的全排列一共有3!= 6 种 分别是{a, b, c}、{a, c, b}、{b, a, c}、{b, c, a}、{c, a, b}、{c, b, a}。
二、常用操作
1.头文件
#include <algorithm>
2.使用方法
这里先说两个概念:“下一个排列组合”和“上一个排列组合”,对序列 {a, b, c},每一个元素都比后面的小,按照字典序列,固定a之后,a比bc都小,c比b大,它的下一个序列即为{a, c, b},而{a, c, b}的上一个序列即为{a, b, c},同理可以推出所有的六个序列为:{a, b, c}、{a, c, b}、{b, a, c}、{b, c, a}、{c, a, b}、{c, b, a},其中{a, b, c}没有上一个元素,{c, b, a}没有下一个元素。
1)next_permutation:求下一个排列组合
a.函数模板:next_permutation(arr, arr+size);
b.参数说明:
arr: 数组名
size:数组元素个数
c.函数功能: 返回值为bool类型,当当前序列不存在下一个排列时,函数返回false,否则返回true,排列好的数在数组中存储
d.注意:在使用前需要对欲排列数组按升序排序,否则只能找出该序列之后的全排列数。
比如,如果数组num初始化为2,3,1,那么输出就变为了:{2 3 1} {3 1 2} {3 2 1}
2)prev_permutation:求上一个排列组合
a.函数模板:prev_permutation(arr, arr+size);
b.参数说明:
arr: 数组名
size:数组元素个数
c.函数功能: 返回值为bool类型,当当前序列不存在上一个排列时,函数返回false,否则返回true
d.注意:在使用前需要对欲排列数组按降序排序,否则只能找出该序列之后的全排列数。
三、代码
#include <iostream>
#include <algorithm>
using namespace std;
int main ()
{
int arr[] = {,,};
cout<<"用prev_permutation对3 2 1的全排列"<<endl;
do
{
cout << arr[] << ' ' << arr[] << ' ' << arr[]<<'\n';
}
while ( prev_permutation(arr,arr+) ); ///获取上一个较大字典序排列,如果3改为2,只对前两个数全排列 int arr1[] = {,,};
cout<<"用next_permutation对1 2 3的全排列"<<endl;
do
{
cout << arr1[] << ' ' << arr1[] << ' ' << arr1[] <<'\n';
}
while ( next_permutation(arr1,arr1+) ); ///获取下一个较大字典序排列,如果3改为2,只对前两个数全排列
///注意数组顺序,必要时要对数组先进行排序 return ;
}
四、全排列递归思路

public class hello {
public static int arr[] = new int[]{,,};
public static void main(String[] args) {
perm(arr,,arr.length-);
}
private static void swap(int i1, int i2) {
int temp = arr[i2];
arr[i2] = arr[i1];
arr[i1] = temp;
}
/**
* 对arr数组中的begin~end进行全排列
*
* 比如:
* arr = {1,2,3}
* 第一步:执行 perm({1,2,3},0,2),begin=0,end=2;
* j=0,因此执行perm({1,2,3},1,2),begin=1,end=2;
* j=1,swap(arr,0,0)-->arr={1,2,3}, perm({1,2,3},2,2),begin=2,end=2;
* 因为begin==end,因此输出数组{1,2,3}
* swap(arr,1,1) --> arr={1,2,3};
* j=2,swap(arr,1,2)-->arr={1,3,2}, perm({1,3,2},2,2),begin=2,end=2;
* 因为begin==end,因此输出数组{1,3,2}
* swap(arr,2,1) --> arr={1,2,3};
* j=1,swap(arr,0,1) --> arr={2,1,3}, perm({2,1,3},1,2),begin=1,end=2;
* j=1,swap(arr,1,1)-->arr={2,1,3} perm({2,1,3},2,2),begin=2,end=2;
* 因为begin==end,因此输出数组{2,1,3}
* swap(arr,1,1)--> arr={2,1,3};
* j=2,swap(arr,1,2)后 arr={2,3,1},并执行perm({2,3,1},2,2),begin=2,end=2;
* 因为begin==end,因此输出数组{2,3,1}
* swap(arr,2,1) --> arr={2,1,3};
* swap(arr,1,0) --> arr={1,2,3}
* j=2,swap(arr,2,0) --> arr={3,2,1},执行perm({3,2,1},1,2),begin=1,end=2;
* j=1,swap(arr,1,1) --> arr={3,2,1} , perm({3,2,1},2,2),begin=2,end=2;
* 因为begin==end,因此输出数组{3,2,1}
* swap(arr,1,1) --> arr={3,2,1};
* j=2,swap(arr,2,1) --> arr={3,1,2},并执行perm({2,3,1},2,2),begin=2,end=2;
* 因为begin==end,因此输出数组{3,1,2}
* swap(arr,2,1) --> arr={3,2,1};
* swap(arr,0,2) --> arr={1,2,3}
*
*/
public static void perm(int arr[], int begin,int end) {
if(end==begin){ //一到递归的出口就输出数组,此数组为全排列
for(int i=;i<=end;i++){
System.out.print(arr[i]+" ");
}
System.out.println();
return;
}
else{
for(int j=begin;j<=end;j++){
swap(begin,j); //for循环将begin~end中的每个数放到begin位置中去
perm(arr,begin+,end); //假设begin位置确定,那么对begin+1~end中的数继续递归
swap(begin,j); //换过去后再还原
}
}
}
}
C++ STL 全排列函数详解的更多相关文章
- STL之map与pair与unordered_map常用函数详解
STL之map与pair与unordered_map常用函数详解 一.map的概述 map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称 ...
- C++ STL bitset 容器详解
C++ STL bitset 容器详解 本篇随笔讲解\(C++STL\)中\(bitset\)容器的用法及常见使用技巧. \(bitset\)容器概论 \(bitset\)容器其实就是个\(01\)串 ...
- malloc 与 free函数详解<转载>
malloc和free函数详解 本文介绍malloc和free函数的内容. 在C中,对内存的管理是相当重要.下面开始介绍这两个函数: 一.malloc()和free()的基本概念以及基本用法: 1 ...
- STL bind1st bind2nd详解
STL bind1st bind2nd详解 先不要被吓到,其实这两个配接器很简单.首先,他们都在头文件<functional>中定义.其次,bind就是绑定的意思,而1st就代表fir ...
- NSSearchPathForDirectoriesInDomains函数详解
NSSearchPathForDirectoriesInDomains函数详解 #import "NSString+FilePath.h" @implementation ...
- JavaScript正则表达式详解(二)JavaScript中正则表达式函数详解
二.JavaScript中正则表达式函数详解(exec, test, match, replace, search, split) 1.使用正则表达式的方法去匹配查找字符串 1.1. exec方法详解 ...
- Linux C popen()函数详解
表头文件 #include<stdio.h> 定义函数 FILE * popen( const char * command,const char * type); 函数说明 popen( ...
- kzalloc 函数详解(转载)
用kzalloc申请内存的时候, 效果等同于先是用 kmalloc() 申请空间 , 然后用 memset() 来初始化 ,所有申请的元素都被初始化为 0. view plain /** * kzal ...
- Netsuite Formula > Oracle函数列表速查(PL/SQL单行函数和组函数详解).txt
PL/SQL单行函数和组函数详解 函数是一种有零个或多个参数并且有一个返回值的程序.在SQL中Oracle内建了一系列函数,这些函数都可被称为SQL或PL/SQL语句,函数主要分为两大类: 单行函数 ...
随机推荐
- Web 开发者不可不知的15条编码原则
HTML 已经走过了近20的发展历程.从HTML4到XHTML,再到最近十分火热的HTML5,它几乎见证了整个互联网的发展.但是,即便到现在,有很多基础的概念和原则依然需要开发者高度注意.下面,向大家 ...
- js刷题:leecode 25
原题:https://leetcode.com/problems/reverse-nodes-in-k-group/ 题意就是给你一个有序链表.如1->2->3->4->5,还 ...
- Oracle笔记之表空间
Oracle中有一个表空间的概念,一个数据库可以有好几个表空间,表放在表空间下. 1. 创建表空间 创建表空间使用create tablespace命令: CREATE TABLESPACE foo_ ...
- MM(Majorize-Minimization, Minorize-Maximization)优化方法
MM算法思想 MM算法是一种迭代优化方法,它利用函数的凸性来找到原函数的最大值或最小值.当原目标函数\(f(\theta)\)较难优化时,算法不直接对原目标函数求最优解,而去求解逼近于原目标函数的一个 ...
- oracle 归档模式、补充日志
1.归档模式: Oracle数据库有联机重做日志,这个日志是记录对数据库所做的修改,比如插入,删除,更新数据等,对这些操作都会记录在联机重做日志里.一般数据库至少要有2个联机重做日志组.当一个联机重做 ...
- [MySQL] gap lock/next-key lock浅析
当InnoDB在判断行锁是否冲突的时候, 除了最基本的IS/IX/S/X锁的冲突判断意外, InnoDB还将锁细分为如下几种子类型: record lock (RK) 记录锁, 仅仅锁住索引记录的一行 ...
- 85.Maximal Rectangle---dp
题目链接:https://leetcode.com/problems/maximal-rectangle/description/ 题目大意:给出一个二维矩阵,计算最大的矩形面积(矩形由1组成).例子 ...
- openjudge-NOI 2.6-1944 吃糖果
题目链接:http://noi.openjudge.cn/ch0206/1944/ 题解: 递推,题目中给出了很详细的过程,不讲解 #include<cstdio> int n; int ...
- python3.X和python2.7的区别
1.python3.X将thread模块修改为_thread
- Linux 不常用命令总结
1. vim编辑模式下,搜索,/user,跳转下一个,小写的n 2.