bzoj1116 [POI2008]CLO 边双联通分量

只需对每个联通块的$dfs$树检查有没有返租边即可
复杂度$O(n + m)$
#include <cstdio>
#include <cstring>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define ri register int
#define sid 400050 int n, m, cnp, flag, id;
int dfn[sid], low[sid], cap[sid], node[sid], nxt[sid]; inline void addedge(int u, int v) {
nxt[++ cnp] = cap[u]; cap[u] = cnp; node[cnp] = v;
} void dfs(int o, int fa) {
dfn[o] = low[o] = ++ id;
#define cur node[i]
for(int i = cap[o]; i; i = nxt[i]) {
if(cur == fa) continue;
if(!dfn[cur]) dfs(cur, o);
else flag = ;
}
} int main() {
n = read(); m = read();
for(ri i = ; i <= m; i ++) {
int u = read(), v = read();
addedge(u, v); addedge(v, u);
}
for(ri i = ; i <= n; i ++)
if(!dfn[i]) {
flag = ; dfs(i, );
if(!flag) { printf("NIE\n"); return ; }
}
printf("TAK\n");
return ;
}
bzoj1116 [POI2008]CLO 边双联通分量的更多相关文章
- 【UVA10972】RevolC FaeLoN (求边双联通分量)
		题意: 给你一个无向图,要求把所有无向边改成有向边,并且添加最少的有向边,使得新的有向图强联通. 分析: 这题的解法还是很好想的.先用边双联通分量缩点,然后找新图中入度为0和为1的点,入度为0则ans ... 
- lightoj 1300 边双联通分量+交叉染色求奇圈
		题目链接:http://lightoj.com/volume_showproblem.php?problem=1300 边双连通分量首先dfs找出桥并标记,然后dfs交叉着色找奇圈上的点.这题只要求在 ... 
- HDU5409---CRB and Graph   2015多校   双联通分量缩点
		题意:一个联通的无向图, 对于每一条边, 若删除该边后存在两点不可达,则输出这两个点, 如果存在多个则输出第一个点尽可能大,第二个点尽可能小的. 不存在输出0 0 首先 若删除某一条边后存在多个联通分 ... 
- poj2942(双联通分量,交叉染色判二分图)
		题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. 思路:首先 ... 
- 『Tarjan算法 无向图的双联通分量』
		无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ... 
- 大白书中无向图的点双联通分量(BCC)模板的分析与理解
		对于一个无向图,如果任意两点至少存在两条点不重复(除起点和终点外无公共点)的路径,则这个图就是点双联通. 这个要求等价于任意两条边都存在于一个简单环(即同一个点不能在圈中出现两次)中,即内部无割点. ... 
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)
		题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ... 
- ARC062 - F. Painting Graphs with AtCoDeer (Polya+点双联通分量)
		似乎好久都没写博客了....赶快来补一篇 题意 给你一个 \(n\) 个点 , 没有重边和自环的图 . 有 \(m\) 条边 , 每条边可以染 \(1 \to k\) 中的一种颜色 . 对于任意一个简 ... 
- Tarjan 强连通分量 及 双联通分量(求割点,割边)
		Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1) 有向图的强联通分量 (2) 无向图的双联通分量(求割点,桥) ... 
随机推荐
- [转]FILE的用法
			#include <stdio.h> int main() { char c; ; FILE *file; file = fopen("test.txt", " ... 
- 59、有用过with statement吗?它的好处是什么?
			python中的with语句是用来干嘛的?有什么作用? with语句的作用是通过某种方式简化异常处理,它是所谓的上下文管理器的一种 用法举例如下: with open('output.txt', 'w ... 
- JS设计模式——1.富有表现力的JS
			创建支持链式调用的类(构造函数+原型) Function.prototype.method = function(name, fn){ this.prototype[name] = fn; retur ... 
- HMM的概述(五个基本元素、两个假设、三个解决的问题)
			一.五个基本元素 HMM是个五元组 λ =( S, O , π ,A,B) S:状态值集合,O:观察值集合,π:初始化概率,A:状态转移概率矩阵,B:给定状态下,观察值概率矩阵 二.两个假设 HM ... 
- perl6 Socket
			Perl6 中的SOCKET就是相当于Perl5 的 IO::Socket::INET. 官方介绍如下: #下面是客户端multi method new( :$host, :$port, :, :$e ... 
- __inet_insert_ifa/__inet_del_ifa
			/* 添加ip地址 主地址添加到最后一个满足范围的主地址后面 从地址添加到整个列表后面 若列表中存在与插入地址在同一子网的地址,则 要求ip地址不同且范围相同,并且插入地址认为是从地址 */ stat ... 
- 浅析linux内核中timer定时器的生成和sofirq软中断调用流程(转自http://blog.chinaunix.net/uid-20564848-id-73480.html)
			浅析linux内核中timer定时器的生成和sofirq软中断调用流程 mod_timer添加的定时器timer在内核的软中断中发生调用,__run_timers会spin_lock_irq(& ... 
- MySQL删除数据几种情况以及是否释放磁盘空间【转】
			MySQL删除数据几种情况以及是否释放磁盘空间: 1.drop table table_name 立刻释放磁盘空间 ,不管是 Innodb和MyISAM ; 2.truncate table tabl ... 
- FileZilla 配置备份与还原【转】
			FileZilla是一款免费开源的FTP软件,安装和配置都很简单.在安装目录下的FileZilla Server Interface.xml和FileZilla Server.xml两个文件是程序的配 ... 
- iOS通知中心
			iOS通知中心 它是iOS程序内部的一种消息广播机制,通过它,可以实现无引用关系的对象之间的通信.通知中心他是基于观察者模式,它只能进行程序内部通信,不能跨应用程序进程通信. 当通知中心接受到消息后会 ... 
