只需对每个联通块的$dfs$树检查有没有返租边即可

复杂度$O(n + m)$

#include <cstdio>
#include <cstring>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define ri register int
#define sid 400050 int n, m, cnp, flag, id;
int dfn[sid], low[sid], cap[sid], node[sid], nxt[sid]; inline void addedge(int u, int v) {
nxt[++ cnp] = cap[u]; cap[u] = cnp; node[cnp] = v;
} void dfs(int o, int fa) {
dfn[o] = low[o] = ++ id;
#define cur node[i]
for(int i = cap[o]; i; i = nxt[i]) {
if(cur == fa) continue;
if(!dfn[cur]) dfs(cur, o);
else flag = ;
}
} int main() {
n = read(); m = read();
for(ri i = ; i <= m; i ++) {
int u = read(), v = read();
addedge(u, v); addedge(v, u);
}
for(ri i = ; i <= n; i ++)
if(!dfn[i]) {
flag = ; dfs(i, );
if(!flag) { printf("NIE\n"); return ; }
}
printf("TAK\n");
return ;
}

bzoj1116 [POI2008]CLO 边双联通分量的更多相关文章

  1. 【UVA10972】RevolC FaeLoN (求边双联通分量)

    题意: 给你一个无向图,要求把所有无向边改成有向边,并且添加最少的有向边,使得新的有向图强联通. 分析: 这题的解法还是很好想的.先用边双联通分量缩点,然后找新图中入度为0和为1的点,入度为0则ans ...

  2. lightoj 1300 边双联通分量+交叉染色求奇圈

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1300 边双连通分量首先dfs找出桥并标记,然后dfs交叉着色找奇圈上的点.这题只要求在 ...

  3. HDU5409---CRB and Graph 2015多校 双联通分量缩点

    题意:一个联通的无向图, 对于每一条边, 若删除该边后存在两点不可达,则输出这两个点, 如果存在多个则输出第一个点尽可能大,第二个点尽可能小的. 不存在输出0 0 首先 若删除某一条边后存在多个联通分 ...

  4. poj2942(双联通分量,交叉染色判二分图)

    题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. 思路:首先 ...

  5. 『Tarjan算法 无向图的双联通分量』

    无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...

  6. 大白书中无向图的点双联通分量(BCC)模板的分析与理解

    对于一个无向图,如果任意两点至少存在两条点不重复(除起点和终点外无公共点)的路径,则这个图就是点双联通. 这个要求等价于任意两条边都存在于一个简单环(即同一个点不能在圈中出现两次)中,即内部无割点. ...

  7. 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  8. ARC062 - F. Painting Graphs with AtCoDeer (Polya+点双联通分量)

    似乎好久都没写博客了....赶快来补一篇 题意 给你一个 \(n\) 个点 , 没有重边和自环的图 . 有 \(m\) 条边 , 每条边可以染 \(1 \to k\) 中的一种颜色 . 对于任意一个简 ...

  9. Tarjan 强连通分量 及 双联通分量(求割点,割边)

    Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) ...

随机推荐

  1. 【LibreOJ】#6299. 「CodePlus 2018 3 月赛」白金元首与克劳德斯

    [题意]给出坐标系中n个矩形,类型1的矩形每单位时间向x轴正方向移动1个单位,类型2的矩形向y轴正方向,初始矩形不重叠,一个点被矩形覆盖当且仅当它在矩形内部(不含边界),求$(-\infty ,+\i ...

  2. 引用类型 ( 对象定义 )——Date 类型

    本文地址:http://www.cnblogs.com/veinyin/p/7607743.html  1 创建日期对象 var date = new Date(); 2 可以给日期对象传值 2.1 ...

  3. Use of exceptionless, 作全局日志分布式记录处理

    Download latest release of exceptionless on github and deploy on Window server, by default exception ...

  4. Spring Tool Suite 配置和使用

    Spring Tool Suite使用 1.下载地址: http://spring.io/tools 2.配置字符编码:UTF-8 默认的编码是ISO-8859-1的西欧文字编 1.windows-- ...

  5. spring boot 加载原理

    spring boot quick start 在springBoot里面,很吸引的一个特征就是可以直接把应用打包成jar/war包形式.然后jar/war包可以直接运行的.不需要再配置web Ser ...

  6. 删除none的images

    脚本 #!/bin/bash docker ps -a | grep "Exited" | awk '{print $1 }'|xargs docker stop docker p ...

  7. imperva系统升级遇见的错误(配置文件的导入导出)

    今天心态有点炸了 今天去东兴证券做waf升级.浪费了两天才弄完.把客户都弄得有点急了.好歹原厂的工程师耐心的讲解这才弄完.感谢路哥.... 赶紧总结一下. 事情是这样的.东兴 证券的imperva是v ...

  8. Git提交记住用户名和密码

    https://www.baidu.com/link?url=R14MHMloypfAfIeiQwCINfY1AZlcoSU7-tYdnqC1PxfmFKs4TWzLOPdtyJbWVfqMqOkRx ...

  9. Python抓取微博评论(二)

    对于新浪微博评论的抓取,首篇做的时候有些考虑不周,然后现在改正了一些地方,因为有人问,抓取评论的时候“爬前50页的热评,或者最新评论里的前100页“,这样的数据看了看,好像每条微博的评论都只能抓取到前 ...

  10. spring源码分析---IOC(1)

    我们都知道spring有2个最重要的概念,IOC(控制反转)和AOP(依赖注入).今天我就分享一下spring源码的IOC. IOC的定义:直观的来说,就是由spring来负责控制对象的生命周期和对象 ...