【POJ】3264 Balanced Lineup ——线段树 区间最值
Balanced Lineup
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 34140 | Accepted: 16044 | |
| Case Time Limit: 2000MS | ||
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
6
3
0
Source
#include <cstdio>
#include <cstring> #define MAX(a, b) (a > b ? a : b)
#define MIN(a, b) (a < b ? a : b) //宏定义提高效率 const int LEN = ; struct Seg
{
int left, right;
int ma, mi;
}seg[LEN*]; void buildt(int l, int r, int step)
{
seg[step].left = l;
seg[step].right = r;
seg[step].ma = ;
seg[step].mi = 0x7fffffff;
if (l == r)
return;
int mid = (l + r)>>;
buildt(l, mid, step<<);
buildt(mid+, r, step<<|);
} void pushup(int step) //向上更新
{
seg[step].ma = MAX(seg[step<<].ma, seg[step<<|].ma);
seg[step].mi = MIN(seg[step<<].mi, seg[step<<|].mi);
} void update(int l, int r, int height, int step)
{
if (l == seg[step].left && r == seg[step].right){
seg[step].mi = height;
seg[step].ma = height;
return;
}
if (seg[step].left == seg[step].right)
return;
int mid = (seg[step].left + seg[step].right)>>;
if (r <= mid)
update(l, r, height, step<<);
else if (l > mid)
update(l, r, height, step<<|);
else{
update(l, mid, height, step<<);
update(mid+, r, height, step<<|);
}
pushup(step); //递归中更新完下一个节点后向上更新
} int queryma(int l, int r, int step) //求区间最大值
{
if (l == seg[step].left && r == seg[step].right){
return seg[step].ma;
}
if (seg[step].left == seg[step].right)
return ;
int mid = (seg[step].left + seg[step].right)>>;
if (r <= mid)
return queryma(l, r, step<<);
else if (l > mid)
return queryma(l, r, step<<|);
else{
int a = queryma(l, mid, step<<);
int b = queryma(mid+, r, step<<|); //防止使用宏定义时多次调用queryma,先调用得到返回值,再比较返回值
return MAX(a, b);
}
} int querymi(int l, int r, int step) //求区间最小值
{
if (l == seg[step].left && r == seg[step].right){
return seg[step].mi;
}
if (seg[step].left == seg[step].right)
return 0x7fffffff;
int mid = (seg[step].left + seg[step].right)>>;
if (r <= mid)
return querymi(l, r, step<<);
else if (l > mid)
return querymi(l, r, step<<|);
else{
int a = querymi(l, mid, step<<);
int b = querymi(mid+, r, step<<|); //同上
return MIN(a, b);
}
} int main()
{
int n, q;
scanf("%d %d", &n, &q);
buildt(, n, );
for(int i = ; i <= n; i++){
int t;
scanf("%d", &t);
update(i, i, t, );
}
for(int i = ; i < q; i++){
int a, b;
scanf("%d %d", &a, &b);
printf("%d\n", queryma(a, b, ) - querymi(a, b, ));
}
return ;
}
【POJ】3264 Balanced Lineup ——线段树 区间最值的更多相关文章
- poj 3264 Balanced Lineup(线段树、RMQ)
题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...
- POJ 3264 Balanced Lineup 线段树RMQ
http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...
- [POJ] 3264 Balanced Lineup [线段树]
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34306 Accepted: 16137 ...
- POJ 3264 Balanced Lineup 线段树 第三题
Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...
- POJ 3264 Balanced Lineup (线段树)
Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...
- POJ - 3264 Balanced Lineup 线段树解RMQ
这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...
- BZOJ-1699 Balanced Lineup 线段树区间最大差值
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...
- POJ3264 Balanced Lineup 线段树区间最大值 最小值
Q个数 问区间最大值-区间最小值 // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <i ...
- Poj 3264 Balanced Lineup RMQ模板
题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...
随机推荐
- ASP.NET Request.QueryString 出现乱码问题
前台: var txing = $("#txing").combobox("getValues"); .......... &tixing=" ...
- Unix/Linux环境C编程入门教程(27) 内存那些事儿
calloc() free() getpagesize() malloc() mmap() munmap()函数介绍 calloc(配置内存空间) 相关函数 malloc,free,realloc,b ...
- 动态可视化库Vis.js:社交关系谱
Form Here:http://code.csdn.net/news/2819345 Vis.js 是一个动态的.基于浏览器的可视化库,可处理大量的动态数据并能与这些数据进行交互操作.该项目是由Al ...
- HDOJ-1042 N!(大数乘法)
http://acm.hdu.edu.cn/showproblem.php?pid=1042 题意清晰..简单明了开门见山的大数乘法.. 10000的阶乘有35000多位 数组有36000够了 # i ...
- Java面试题之九
四十六.Math.round(11.5)等於多少? Math.round(-11.5)等於多少? 对于这个题,只要弄清楚Math提供的三个与取整相关的方法就OK了. 1.ceil,英文含义是天花板,该 ...
- linux动态库加载时搜索路径
摘自http://gotowqj.iteye.com/blog/1926613 对动态库的实际应用还不太熟悉的读者可能曾经遇到过类似“error while loading shared librar ...
- hdu 4393 Throw nails(STL之优先队列)
Problem Description The annual school bicycle contest started. ZL is a student in this school. He is ...
- R-plot
颜色.图例和线 在散点图中添加信息.图例以及回归线. 模拟数据 #模拟数据 dat <- data.frame(X = runif(100,-2,2),T1 = gl(n=4,k=25,labe ...
- 《JavaScript 闯关记》之初探
当学习一门新的编程语言的时候,应该边学边做,反复演练以加深理解.因此,你需要一个 JavaScript 解释器.幸运的是,每一个 Web 浏览器都包含一个 JavaScript 解释器. 可以通过在 ...
- linux 链接控制
如发现系统存在大量TIME_WAIT状态的连接,通过调整内核参数解决,vim /etc/sysctl.conf编辑文件,加入以下内容:net.ipv4.tcp_syncookies = 1net.ip ...