题目:http://acm.hdu.edu.cn/showproblem.php?pid=1316

题意:给两个数a和b,其中它们可能很大,最大到10^100,然后求去区间[a,b]内有多少个fib数。

分析:这个题呢,看数据肯定是要当字符串处理的,那么对于本题我的思路就是先把fib数长度小于等于100的预处理出来。

然后呢,就与a和b比较,分别找出刚好大于等于a的fib数的下标和刚好小于等于b的fib数下标,假设分别是record1和

record2,那么record2-record1+1就是答案了。

估计了一下,由于在1000以内的fib数的长度就超过了100,所以预处理到1000个fib数就行了。

#include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
const int N=1005; int fib[N][105];
int f[N][105];
int h[N]; void Solve()
{
memset(fib,0,sizeof(fib));
h[0]=0;h[1]=0;
fib[0][0]=1;fib[1][0]=1;
for(int i=2;i<N;i++)
{
for(int j=0;j<105;j++)
{
fib[i][j]+=fib[i-1][j]+fib[i-2][j];
if(fib[i][j]>=10)
{
fib[i][j]-=10;
fib[i][j+1]++;
}
}
for(int j=104;j>=0;j--)
{
if(fib[i][j])
{
h[i]=j;
break;
}
}
}
} bool compare1(char *str,int len,int a[],int n)
{
if(n<len) return true;
if(n>len) return false;
for(int i=0;i<n;i++)
{
if(str[i]-'0'>a[i]) return true;
if(str[i]-'0'<a[i]) return false;
}
return true;
} bool compare2(char *str,int len,int a[],int n)
{
if(n>len) return true;
if(n<len) return false;
for(int i=0;i<n;i++)
{
if(str[i]-'0'<a[i]) return true;
if(str[i]-'0'>a[i]) return false;
}
return true;
} char a[105],b[105]; int main()
{
Solve();
for(int i=0;i<N;i++)
for(int j=h[i];j>=0;j--)
f[i][h[i]-j]=fib[i][j];
int record1,record2;
while(cin>>a>>b)
{
int len1=strlen(a);
int len2=strlen(b);
if(len1==1&&len2==1&&a[0]=='0'&&b[0]=='0') break;
for(int i=1;i<N;i++)
{
if(compare2(a,len1,f[i],h[i]+1))
{
record1=i;
break;
}
}
for(int i=N-1;i>=1;i--)
{
if(compare1(b,len2,f[i],h[i]+1))
{
record2=i;
break;
}
}
cout<<record2-record1+1<<endl;
}
return 0;
}

HDU1316(求区间斐波那契数的个数)的更多相关文章

  1. hdu1316(大数的斐波那契数)

    题目信息:求两个大数之间的斐波那契数的个数(C++/JAVA) pid=1316">http://acm.hdu.edu.cn/showproblem.php? pid=1316 这里 ...

  2. C++求斐波那契数

    题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...

  3. POJ 3070(求斐波那契数 矩阵快速幂)

    题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...

  4. hdu1568&&hdu3117 求斐波那契数前四位和后四位

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案 斐波那契数列通式: 当n<=2 ...

  5. 用x种方式求第n项斐波那契数,99%的人只会第一种

    大家好啊,我们又见面了.听说有人想学数据结构与算法却不知道从何下手?那你就认真看完本篇文章,或许能从中找到方法与技巧.     本期我们就从斐波那契数列的几种解法入手,感受算法的强大与奥妙吧. 原文链 ...

  6. 求斐波那契数的python语言实现---递归和迭代

    迭代实现如下: def fab(n): n1 = 1 n2 = 1 if n<1: print("输入有误!") return -1 while (n-2)>0: n3 ...

  7. 数学算法(一):快速求斐波那契数第n项通过黄金分割率公式

    有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接 ...

  8. noip模拟9[斐波那契·数颜色·分组](洛谷模拟测试)

    这次考试还是挺好的 毕竟第一题被我给A了,也怪这题太简单,规律一眼就看出来了,但是除了第一题,剩下的我只有30pts,还是菜 第二题不知道为啥我就直接干到树套树了,线段树套上一个权值线段树,然后我发现 ...

  9. Project Euler 104:Pandigital Fibonacci ends 两端为全数字的斐波那契数

    Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1 ...

随机推荐

  1. Oracle select into from 和 insert into select

    select into from SQLSERVER  创建表: select * into aaa from bbb Oracle 创建表: create table aaa as select * ...

  2. Three Swaps DFS

    E. Three Swaps time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  3. Threads and Anonymous Classes in JAVA

    As we all know,a thread is a separate process on your computer.you can run multiple threads all at t ...

  4. 前端笔试面试中的常用知识点总结(CSS)

    1.CSS选择器的优先级!important  > 内联 > id选择器 > 类选择器 > 标签选择器多个类选择器叠加(256)之后的优先级大于一个id选择器!importan ...

  5. javaweb学习路之二--上传gitgub

    代码上传github 代码上传到github的步骤 第一步:申请github账号 https://github.com/注册账号 第二步:登录github,新建repository仓库,命名,创建 第 ...

  6. 使用R进行相关性分析

    基于R进行相关性分析 一.相关性矩阵计算: [1] 加载数据: >data = read.csv("231-6057_2016-04-05-ZX_WD_2.csv",head ...

  7. 杭电ACM 汉字统计

    汉字统计 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  8. python安装zlib一直无效

    一直按网上的方法: 1.先安装 apt-get install zlib1g-dev 2.重新安装python(3.3):即是./configure 再make再make install 始终没有解决 ...

  9. c++实现二分查找

    简要描述: 二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除 困难. 条件:查找的数组必须要为有序数组. 二分查找的过程剩简要描述如下图: 二种实 ...

  10. Centos6 安全防护设置指南

    参考博文: Centos 6.4安全防护设置指南 4.使用chattr命令给下列文件加上不可更改的属性 有效防止非法用户进行文件的修改. [root@localhost ~]# chattr +i / ...