题意:给定一个字符串,求至少出现k 次的最长重复子串,这k 个子串可以重叠。

分析:经典的后缀数组求解题:先二分答案,然后将后缀分成若干组。这里要判断的是有没有一个组的符合要求的后缀个数(height[i] >= mid)不小于k。如果有,那么存在
k 个相同的子串满足条件,否则不存在。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 22222
#define M 1111111
#define INF 0x7FFFFFFF
/****后缀数组模版****/
#define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置
#define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算
int wa[N],wb[N],wv[N],WS[M];
int sa[N*3] ; //第i小的后缀,起始位置在源字符串的位置
int rank1[N],height[N]; //rank 以i为起始位置的后缀在后缀排列中的名次
int r[N*3]; //如果输入是字符串,承接字符串,用来计算 int c0(int *r,int a,int b) {
return r[a]==r[b] && r[a+1]==r[b+1] && r[a+2]==r[b+2];
}
int c12(int k,int *r,int a,int b) {
if(k==2)
return r[a]<r[b] || ( r[a]==r[b] && c12(1,r,a+1,b+1) );
else
return r[a]<r[b] || ( r[a]==r[b] && wv[a+1]<wv[b+1] );
}
void sort(int *r,int *a,int *b,int n,int m) {
int i;
for(i=0; i<n; i++)
wv[i]=r[a[i]];
for(i=0; i<m; i++)
WS[i]=0;
for(i=0; i<n; i++)
WS[wv[i]]++;
for(i=1; i<m; i++)
WS[i]+=WS[i-1];
for(i=n-1; i>=0; i--)
b[--WS[wv[i]]]=a[i];
return;
} //注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n
void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa
int i , j , *rn = r+n , *san = sa+n , ta = 0 ,tb = (n+1)/3 , tbc = 0 , p;
r[n] = r[n+1] = 0;
for(i=0; i<n; i++) {
if(i%3!=0)
wa[tbc++]=i; //tbc表示起始位置模3为1或2的后缀个数
}
sort(r+2,wa,wb,tbc,m);
sort(r+1,wb,wa,tbc,m);
sort(r,wa,wb,tbc,m);
for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++)
rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++;
if(p<tbc)
dc3(rn,san,tbc,p);
else {
for(i=0; i<tbc; i++)
san[rn[i]]=i;
}
//对所有起始位置模3等于0的后缀排序
for(i=0; i<tbc; i++) {
if(san[i]<tb)
wb[ta++]=san[i]*3;
}
if(n%3==1) //n%3==1,要特殊处理suffix(n-1)
wb[ta++]=n-1;
sort(r,wb,wa,ta,m);
for(i=0; i<tbc; i++)
wv[wb[i] = G(san[i])]=i;
//合并所有后缀的排序结果,保存在sa数组中
for(i=0,j=0,p=0; i<ta&&j<tbc; p++)
sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++];
for(; i<ta; p++)
sa[p]=wa[i++];
for(; j<tbc; p++)
sa[p]=wb[j++];
return;
} //height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀
void calheight(int *r,int *sa,int n) {
int i,j,k=0;
for(i=1; i<=n; i++)
rank1[sa[i]]=i;
for(i=0; i<n; height[rank1[i++]]=k)
for(k?k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++);
} bool judge(int mid,int n,int k) {
int cnt = 1;
for(int i=1; i<=n; i++) {
if(height[i] >= mid) {
cnt ++;
} else cnt = 1;
if(cnt >= k) return true;
}
return false;
} int main() {
int n,k;
cin >> n >> k;
for(int i=0; i<n; i++) {
scanf("%d",&r[i]);
r[i] ++;
}
r[n] = 0; //要保证结尾最小
dc3(r,sa,n+1,1000010);
calheight(r,sa,n);
int l=1, r=n,mid; //枚举长度
int ans = 0;
while(l <= r) {
mid = (l+r) >> 1;
if(judge(mid,n,k)) {
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
cout << ans << endl;
return 0;
}

因为m太大,而n只有2w,简单的离散化之后,基数排序效率提高,总效率也提高了

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 22222
#define INF 0x7FFFFFFF
/****后缀数组模版****/
#define F(x)((x)/3+((x)%3==1?0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置
#define G(x)((x)<tb?(x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算
int wa[N],wb[N],wv[N],WS[N];
int sa[N*3] ; //第i小的后缀,起始位置在源字符串的位置
int rank1[N],height[N]; //rank 以i为起始位置的后缀在后缀排列中的名次
int r[N*3]; //如果输入是字符串,承接字符串,用来计算 int c0(int *r,int a,int b) {
return r[a]==r[b] && r[a+1]==r[b+1] && r[a+2]==r[b+2];
}
int c12(int k,int *r,int a,int b) {
if(k==2)
return r[a]<r[b] || ( r[a]==r[b] && c12(1,r,a+1,b+1) );
else
return r[a]<r[b] || ( r[a]==r[b] && wv[a+1]<wv[b+1] );
}
void sort(int *r,int *a,int *b,int n,int m) {
int i;
for(i=0; i<n; i++)
wv[i]=r[a[i]];
for(i=0; i<m; i++)
WS[i]=0;
for(i=0; i<n; i++)
WS[wv[i]]++;
for(i=1; i<m; i++)
WS[i]+=WS[i-1];
for(i=n-1; i>=0; i--)
b[--WS[wv[i]]]=a[i];
return;
} //注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n
void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa
int i , j , *rn = r+n , *san = sa+n , ta = 0 ,tb = (n+1)/3 , tbc = 0 , p;
r[n] = r[n+1] = 0;
for(i=0; i<n; i++) {
if(i%3!=0)
wa[tbc++]=i; //tbc表示起始位置模3为1或2的后缀个数
}
sort(r+2,wa,wb,tbc,m);
sort(r+1,wb,wa,tbc,m);
sort(r,wa,wb,tbc,m);
for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++)
rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++;
if(p<tbc)
dc3(rn,san,tbc,p);
else {
for(i=0; i<tbc; i++)
san[rn[i]]=i;
}
//对所有起始位置模3等于0的后缀排序
for(i=0; i<tbc; i++) {
if(san[i]<tb)
wb[ta++]=san[i]*3;
}
if(n%3==1) //n%3==1,要特殊处理suffix(n-1)
wb[ta++]=n-1;
sort(r,wb,wa,ta,m);
for(i=0; i<tbc; i++)
wv[wb[i] = G(san[i])]=i;
//合并所有后缀的排序结果,保存在sa数组中
for(i=0,j=0,p=0; i<ta&&j<tbc; p++)
sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++];
for(; i<ta; p++)
sa[p]=wa[i++];
for(; j<tbc; p++)
sa[p]=wb[j++];
return;
} //height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀
void calheight(int *r,int *sa,int n) {
int i,j,k=0;
for(i=1; i<=n; i++)
rank1[sa[i]]=i;
for(i=0; i<n; height[rank1[i++]]=k)
for(k?k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++);
} bool judge(int mid,int n,int k) {
int cnt = 1;
for(int i=1; i<=n; i++) {
if(height[i] >= mid) {
cnt ++;
} else cnt = 1;
if(cnt >= k) return true;
}
return false;
}
int xx[N],x[N];
int search(int v,int m) {
int l = 0,r = m-1;
while(l <= r) {
int mid = (l + r) /2;
if(x[mid] == v)
return mid;
if(v < x[mid])
r = mid-1;
else
l = mid+1;
}
return -1;
}
int main() {
int n,k;
cin >> n >> k;
for(int i=0; i<n; i++) {
scanf("%d",&x[i]);
xx[i] = x[i];
}
int m = 1;
for (int i=1; i<n; i++) { //离散化去重
if (x[i] != x[i-1]) x[m ++] = x[i];
}
sort(x,x+m);
for(int i=0; i<n; i++) r[i] = search(xx[i],m) + 1;
// for(int i=0; i<n; i++) cout << r[i] << ' ';
// cout << endl;
r[n] = 0; //要保证结尾最小
dc3(r,sa,n+1,20001);
calheight(r,sa,n);
int l=1, r=n,mid; //枚举长度
int ans = 0;
while(l <= r) {
mid = (l+r) >> 1;
if(judge(mid,n,k)) {
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
cout << ans << endl;
return 0;
}

POJ 3261 Milk Patterns(后缀数组+二分答案+离散化)的更多相关文章

  1. Poj 3261 Milk Patterns(后缀数组+二分答案)

    Milk Patterns Case Time Limit: 2000MS Description Farmer John has noticed that the quality of milk g ...

  2. poj 3261 Milk Patterns 后缀数组 + 二分

    题目链接 题目描述 给定一个字符串,求至少出现 \(k\) 次的最长重复子串,这 \(k\) 个子串可以重叠. 思路 二分 子串长度,据其将 \(h\) 数组 分组,判断是否存在一组其大小 \(\ge ...

  3. POJ 3261 Milk Patterns 后缀数组求 一个串种 最长可重复子串重复至少k次

    Milk Patterns   Description Farmer John has noticed that the quality of milk given by his cows varie ...

  4. POJ 3261 Milk Patterns(后缀数组+单调队列)

    题意 找出出现k次的可重叠的最长子串的长度 题解 用后缀数组. 然后求出heigth数组. 跑单调队列就行了.找出每k个数中最小的数的最大值.就是个滑动窗口啊 (不知道为什么有人写二分,其实写啥都差不 ...

  5. POJ 3261 Milk Patterns ( 后缀数组 && 出现k次最长可重叠子串长度 )

    题意 : 给出一个长度为 N 的序列,再给出一个 K 要求求出出现了至少 K 次的最长可重叠子串的长度 分析 : 后缀数组套路题,思路是二分长度再对于每一个长度进行判断,判断过程就是对于 Height ...

  6. Poj 1743 Musical Theme(后缀数组+二分答案)

    Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 28435 Accepted: 9604 Descri ...

  7. BZOJ 1717 [USACO06DEC] Milk Patterns (后缀数组+二分)

    题目大意:求可重叠的相同子串数量至少是K的子串最长长度 洛谷传送门 依然是后缀数组+二分,先用后缀数组处理出height 每次二分出一个长度x,然后去验证,在排序的后缀串集合里,有没有连续数量多于K个 ...

  8. POJ 1226 Substrings(后缀数组+二分答案)

    [题目链接] http://poj.org/problem?id=1226 [题目大意] 求在每个给出字符串中出现的最长子串的长度,字符串在出现的时候可以是倒置的. [题解] 我们将每个字符串倒置,用 ...

  9. poj 3294 Life Forms - 后缀数组 - 二分答案

    题目传送门 传送门I 传送门II 题目大意 给定$n$个串,询问所有出现在严格大于$\frac{n}{2}$个串的最长串.不存在输出'?' 用奇怪的字符把它们连接起来.然后求sa,hei,二分答案,按 ...

随机推荐

  1. Linux安装make无法使用

    1.apt-get update 2.apt-get install g++ 3.apt-get install pentium-builder 4.apt-get install build-ess ...

  2. DCI架构

    提出的文章:DCI架构:一个面向对象编程的新图景 http://wenku.baidu.com/view/a7b5e401de80d4d8d15a4fed.html http://www.360doc ...

  3. 记NOIP分数出来前

    咩~成绩还没有出来呢!但是拿到了每个人的程序,还有一堆民间的数据.我测了好多不同的数据,基本上D1T1,D2T1,D2T2的都是暴力解决掉的,没有什么问题,唯一就是D1T2的link那一题,写的时候2 ...

  4. 深入分析MySQL ERROR 1045 (28000)

    这几天在MySQL新建用户后.出现訪问拒绝的问题,错误码为ERROR 1045(28000).在网上搜索了非常久.找到了非常多解决的方法,但非常遗憾的是这么多办法没有一个能解决该问题.尽管出现的错误码 ...

  5. javascript技术难点之this、new、apply和call详解

    讲解this指针的原理是个很复杂的问题,如果我们从javascript里this的实现机制来说明this,很多朋友可能会越来越糊涂,因此本篇打算换一个思路从应用的角度来讲解this指针,从这个角度理解 ...

  6. Java多线程之synchronized(三)

    在多线程访问同一个对象中的不同的synchronized方法或synchronized代码块的前提下,也就是“对象监控器”为同一个对象的时候,也就是synchronized的锁为同一把锁的时候,调用的 ...

  7. JAVA虚拟机内存模型

    一.对于Java程序员来说,在虚拟机的自动内存管理机制下,我们不需要为每一个new操作去写匹配的delete/free操作 但是当我们对于内存的管理了解有能够帮助我们理解Java虚拟机的垃圾回收机制. ...

  8. BZOJ 4143 The Lawyer

           这道题看起来很吓人,但事实上看懂后会发现,其根本没有任何技术含量,做这道题其实要考虑的就是每天最早结束的一场的结束时间以及最晚开始的一场的开始时间,如果结束时间早于开始时间,那么OK就这 ...

  9. literal控件的例子

    Literal的Mode属性,举例说明 这个属性的枚举值:PassThrough  Encode  Transform <%@ Page Language="C#" Auto ...

  10. poj 1979 Red and Black(dfs)

    题目链接:http://poj.org/problem?id=1979 思路分析:使用DFS解决,与迷宫问题相似:迷宫由于搜索方向只往左或右一个方向,往上或下一个方向,不会出现重复搜索: 在该问题中往 ...