hdu3415:最大k子段和,单调队列
题目大意:
给定长度为n的数组,求出最大的区间和,其中区间长度在[1,k]之间
分析:
学动态规划的时候我们会遇到一个经典问题
最大子段和,这个题跟最大子段和很类似 不同的是区间的长度有限制,无法用原算法解决
转换思路
区间[i,j]的和就是ans=sum(j)-sum(i-1) ( j - i <=k)
那么对于每个j 我们肯定希望sum(i-1)最小,所以我们只需要对sum(i-1)维护一个单调队列,然后依次增加 j
同时将单调队列中不满足( j - i <k)的元素出队即可
代码:
#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
#define maxn 10000010
typedef struct Node
{
int val;
int num;
}node;
typedef struct dqueue
{
node q[maxn];
int l,r;
void ini()
{
l=;
r=;
}
node front()
{
return q[l];
}
node pop()
{
l++;
return q[l-];
}
void push(node x)
{
if(r==l)
{
q[r++]=x;
return;
}
if(x.val<q[l].val)
{
r=l;
q[r++]=x;
return;
}
while(r>=&&(x.val<q[r-].val))
{
r--;
}
q[r++]=x;
}
}Dqueue;
int a[];
int sum[];
Dqueue q;
int main()
{
int n,k,T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
sum[]=;
for(int i=;i<=n;i++)
{
scanf("%d",a+i);
}
memcpy(a+n+,a+,n*sizeof(int));
for(int i=;i<=*n;i++)
{
sum[i]=sum[i-]+a[i];
}
node x;
node tmp;
int t=;
q.ini();
int ans=-;
int l,r;
for(int i=;i<=*n;i++)
{
x.val=sum[i-];
x.num=i-;
q.push(x);
while()
{
tmp=q.front();
if(i-tmp.num>k)
{
q.pop();
}
else
{
break;
}
}
if(sum[i]-tmp.val>ans)
{
ans=sum[i]-tmp.val;
l=tmp.num+;
r=i;
continue;
}
}
if(r>n)
{
r-=n;
}
printf("%d %d %d\n",ans,l,r);
}
return ;
}
hdu3415:最大k子段和,单调队列的更多相关文章
- hdu3415 Max Sum of Max-K-sub-sequence 单调队列
//hdu3415 Max Sum of Max-K-sub-sequence //单调队列 //首先想到了预处理出前缀和利用s[i] - s[j]表示(j,i]段的和 //之后的问题就转换成了求一个 ...
- 51nod 1050 循环数组最大子段和 单调队列优化DP
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1050 这个呢,这个题之前 求一遍最大值 然后求一遍最小值 ...
- 求最长的任意两元素差不超过M的子段——双指针+单调队列hdu4123
换根dp的部分比较容易,难点在于求求最长的任意两元素差不超过M的子段 首先会想到双指针维护(尺取法),如果p1,p2间的max-min>M,那么p1向右移动,直到p1,p2间的max-min&g ...
- Subsequence(两个单调队列)
Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
- bzoj 1531 Bank notes 多重背包/单调队列
多重背包二进制优化终于写了一次,注意j的边界条件啊,疯狂RE(还是自己太菜了啊啊)最辣的辣鸡 #include<bits/stdc++.h> using namespace std; in ...
- HDU 3530 单调队列
题目大意:给你n个数, 让你问你最长的满足要求的区间有多长,区间要求:MAX - MIN >= m && MAX - MIN <= k 思路:单调队列维护递增和递减,在加入 ...
- POJ - 1821 单调队列优化DP + 部分笔记
题意:n个墙壁m个粉刷匠,每个墙壁至多能被刷一次,每个粉刷匠要么不刷,要么就粉刷包含第Si块的长度不超过Li的连续墙壁(中间可不刷),每一块被刷的墙壁都可获得Pi的利润,求最大利润 避免重复粉刷: 首 ...
- hdu3401 Trade 单调队列优化dp
Trade Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- 【P3572】little bird(单调队列+DP)
一眼看上去这个题就要DP,可是应该怎么DP呢,我们发现,数据范围最多支持O(NlogN),但是这种DP貌似不怎么有,所以应该是O(N)算法,自然想到单调队列优化DP. 然后我们先考虑如果不用单调队列应 ...
随机推荐
- tomcat+redis实现session共享缓存
一:linux下redis安装 1.wget http://download.redis.io/releases/redis-3.2.4.tar.gz 2.tar xzf redis-3.2.4.ta ...
- Java编程思想-第四章练习题
练习1:写一个程序,打印从1到100的值 public class Print1To100{ public static void main(String args[]){ for(int i = 1 ...
- NetAnalyzer笔记 目录
目录 NetAnalyzer笔记 之 一 开篇语 NetAnalyzer笔记 之 二 简单的协议分析 NetAnalyzer笔记 之 三 用C++做一个抓包程序 NetAnalyzer笔记 之 四 C ...
- (转)Apple Push Notification Services in iOS 6 Tutorial: Part 2/2
转自:http://www.raywenderlich.com/32963/apple-push-notification-services-in-ios-6-tutorial-part-2 Upda ...
- 内嵌cuzySDK的App——礼物购已登陆App store
内嵌cuzySDK的App——礼物购已登陆App store.每天为你搜罗特别的礼物,可分类挑选礼物,直接连接淘宝购买,做最贴心的小清新礼物助手,欢迎各位亲朋好友去下载体验.@cuzySDK @re ...
- 第12届北师大校赛热身赛第二场 A.不和谐的长难句1
题目链接:http://www.bnuoj.com/bnuoj/problem_show.php? pid=17121 2014-04-25 22:59:49 不和谐的长难句1 Time Limit: ...
- HashMap学习笔记
概述 HashMap是Map接口的一个哈希表的实现,内部是一个数组表示的.数组中的元素叫做一个Node,一个Node可以一个是一个简单的表示键值对的二元组,也可以是一个复杂的TreeNod ...
- sed删除空行和注释行
最近在看前辈们写的代码,他们把没有用的代码是注释掉而不是删掉.没用的代码和注释很乱,看着心烦,就把注释删掉来解读,顿时爽快多了. 不多说了,直接举例子 比如一个文本文件 data 里的内弄为 cat ...
- pd的django To do list教程-----(2)models模型的建立
1:在models.py中建表 from django.db import models class Tcontent(models.Model): content = models.CharFiel ...
- 工厂方法模式(java 设计模式)
1.工厂方法模式的定义 工厂方法模式使用的频率非常高, 在我们日常的开发中总能见到它的身影. 其定义为:Define an interface for creating an object,but l ...