instance

代码:

import pulp

z = [2, 3, 1]
a = [[1, 4, 2], [3, 2, 0]]
b = [8, 6]
aeq = [[1,2,4]]
beq = [101]
#确定最大化最小化问题,最大化只需将Min改成Max即可
m = pulp.LpProblem(sense=pulp.LpMinimize)
# 定义三个变量放到列表中
x = [pulp.LpVariable(f'x{i}', lowBound=0) for i in [1, 2, 3]]
#定义目标函数,lopDot可以将两个列表的对应位相乘再相加
#相当于z[0]*x[0]+....
m += pulp.lpDot(z,x)
#设置不等式约束条件
for i in range(len(a)):
m += pulp.lpDot(a[i], x) >= b[i]
#设置等式约束条件
for i in range(len(aeq)):
m += pulp.lpDot(aeq[i],x) == beq[i]
#求解
m.solve()
#输出结果
print(f'优化结果:{pulp.value(m.objective)}')
print(f'参数取值:{[pulp.value(var) for var in x]}')

import numpy as np
import pulp as pl def main():
ProbLp=pl.LpProblem("ProbLp",sense=pl.LpMaximize)
print(ProbLp.name)
x1=pl.LpVariable('x1',lowBound=0,upBound=None,cat='Integer')
x2=pl.LpVariable('x2',lowBound=0,upBound=2,cat='integer') ProbLp+=(x1+4*x2)
ProbLp+=(-2*x1+3*x2<=3)
ProbLp+=(x1+2*x2<=8)
ProbLp.solve()
print("Shan Status:", pl.LpStatus[ProbLp.status]) # 输出求解状态
for v in ProbLp.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F(x) =", pl.value(ProbLp.objective)) # 输出最优解的目标函数值 if __name__ =='__main__':
main()
ProbLp
Shan Status: Optimal
x1 = 4.0
x2 = 2.0
F(x) = 12.0

  

基于python的数学建模---pulp库的更多相关文章

  1. Python数模笔记-PuLP库(1)线性规划入门

    1.什么是线性规划 线性规划(Linear programming),在线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配.生产调度和混合问题.例如: max fx = 2*x1 ...

  2. Python数模笔记-PuLP库(2)线性规划进阶

    1.基于字典的创建规划问题 上篇中介绍了使用 LpVariable 对逐一定义每个决策变量,设定名称.类型和上下界,类似地对约束条件也需要逐一设置模型参数.在大规模的规划问题中,这样逐个定义变量和设置 ...

  3. scapy - 基于python的数据包操作库

    简介 地址:https://github.com/secdev/scapy scapy是一个基于python的交互式数据包操作程序和库. 它能够伪造或者解码多种协议的数据包,通过使用pcap文件对他们 ...

  4. 基于Python的开源人脸识别库:离线识别率高达99.38%

    项目地址:https://github.com/ageitgey/face_recognition#face-recognition 本文的模型使用了C++工具箱dlib基于深度学习的最新人脸识别方法 ...

  5. 使用wxpy这个基于python实现的微信工具库的一些常见问题

    使用如下的命令行安装: pip install wxpy Collecting wxpy Downloading https://files.pythonhosted.org/packages/6b/ ...

  6. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  7. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  8. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  9. Python小白的数学建模课-A1.国赛赛题类型分析

    分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...

  10. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

随机推荐

  1. KingbaseES lag 和 lead 函数

    1.简介 lag与lead函数是跟偏移量相关的两个分析函数,通过这两个函数可以在一次查询中取出同一字段的前N行的数据(lag)和后N行的数据(lead)作为独立的列,从而更方便地进行进行数据过滤. 2 ...

  2. KingbaseES R6 集群创建流复制只读副本库案例

    一.环境概述 [kingbase@node2 bin]$ ./ksql -U system test ksql (V8.0) Type "help" for help. test= ...

  3. 《Java编程思想》读书笔记(五)

    前言:本文是<Java编程思想>读书笔记系列的最后一章,本章的内容很多,需要细读慢慢去理解,文中的示例最好在自己电脑上多运行几次,相关示例完整代码放在码云上了,码云地址:https://g ...

  4. 【读书笔记】C#高级编程 第十二章 动态语言扩展

    (一)DLR C#4的动态功能是Dynamic Language Runtime(动态语言运行时,DLR)的一部分.DLR是添加到CLR的一系列服务. (二)dynamic类型 dynamic类型允许 ...

  5. mysql8.0.25版本设置主从数据库,并且从库只读

    具体操作步骤 说明:主从数据库版本一致 1.主库创建同步使用的用户 create user 'repl'@'%' identified with 'mysql_native_password' by ...

  6. 配置 jenkins 权限管理

    安装插件 更改认证方式 创建用户 创建角色并授权 给用户指定角色 新用户登录

  7. Docker安装集群rabbitMQ

    环境准备 Centos 7.5虚拟机三台: 192.168.102.128 192.168.102.130 192.168.102.131 以上虚拟机统一安装docker环境 三台机器分别配置如下所示 ...

  8. 使用 PushGateway 进行数据上报采集

    转载自:https://cloud.tencent.com/developer/article/1531821 1.PushGateway 介绍 Prometheus 是一套开源的系统监控.报警.时间 ...

  9. C++自学笔记 面向对象程序设计OOP(Object Oriented Programming)

    什么是对象? Objects = Attributes + Services Data : The properties or status Operations: the fuctions C语言中 ...

  10. 《吐血整理》高级系列教程-吃透Fiddler抓包教程(26)-Fiddler如何抓取Android7.0以上的Https包-上篇

    1.简介 众所周知,假如设备是android 7.0+的系统同时应用设置targetSdkVersion >= 24的话,那么应用默认是不信任安装的Fiddler用户证书的,所以你就没法抓到应用 ...