1.ICP

假设有一组配对好的3D点, \(P={P_{1}, ..., P_{N}}\) , \(P^{'}={P_{1}^{'}, ..., P_{N}^{'}}\)。

有一个欧式变换R,t,使得: \(p_{i} = Rp^{'}_{i} + t\)

该问题可以用迭代最近点(ICP)来求解。注意考虑两组3D点的变换时,和相机没有关系。

ICP求解线性代数的求解(SVD)和非线性优化方式求解(类似于BA)

2.SVD求解:

定义误差项: \(e_{i} = p_{i} - ( Rp^{'}_{i} + t )\)

构建最小二乘问题,使误差平方和达到极小的R,t

定义两组点的质心:

\(p = \frac{1}{n} \sum^{n}_{i=1} (p_{i}), p^{'} = \frac{1}{n} \sum^{n}_{i=1} (p_{i}^{'}),\)

步骤:

  • 计算两组点的质心位置 \(p,p^{'}\),然后再计算每个点的去质心坐标:

    \(q_{i} = p_{i} - p, q_{i}^{'} = p_{i}^{'} - p^{'}\)

  • 计算 \(R^{*} = argmin \frac{1}{2} \sum^{n}_{i=1} || q_{i} - Rq_{i}^{'} ||^{2}\)

  • 将上式展开,优化函数变为求解 \(-tr( R \sum^{n}_{i=1} q_{i}^{'} q_{i}^{T} )\)

    定义 \(W=\sum^{n}_{i=1} q_{i}^{'} q_{i}^{T}\),对W进行SVD分解,得到\(W=U \Sigma V^{T}\)

  • \Sigma 为奇异值组成的对角矩阵,对角线元素从大到小排列,而U和V为正交矩阵。当W满秩时,\(R=UV^{T}\)

  • 根据求出的R,计算t: \(t^{*} = p - Rp^{'}\)

3.代码:

void pose_estimation_3d3d(const vector<Point3f> &pts1,
const vector<Point3f> &pts2,
Mat &R, Mat &t) {
Point3f p1, p2; // center of mass
//求质心
int N = pts1.size();
for (int i = 0; i < N; i++) {
p1 += pts1[i];
p2 += pts2[i];
} p1 = Point3f(Vec3f(p1) / N);
p2 = Point3f(Vec3f(p2) / N);
vector<Point3f> q1(N), q2(N); // remove the center
//去质心
for (int i = 0; i < N; i++) {
q1[i] = pts1[i] - p1;
q2[i] = pts2[i] - p2;
} // compute q1*q2^T
Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
for (int i = 0; i < N; i++) {
W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose();
}
cout << "W=" << W << endl; // SVD on W
Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d V = svd.matrixV(); cout << "U=" << U << endl;
cout << "V=" << V << endl; Eigen::Matrix3d R_ = U * (V.transpose());
if (R_.determinant() < 0) {
R_ = -R_;
}
Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z); // convert to cv::Mat
//推导是按第二张图到第一张图的变化,
//此处进行逆变换,即为第一张图到第二张图的变化
R = (Mat_<double>(3, 3) <<
R_(0, 0), R_(0, 1), R_(0, 2),
R_(1, 0), R_(1, 1), R_(1, 2),
R_(2, 0), R_(2, 1), R_(2, 2)
);
t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}

4.非线性优化方法:

/// 节点,优化变量维度和数据类型
class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW; //初始化
virtual void setToOriginImpl() override {
_estimate = Sophus::SE3d();
} //更新估计值
/// left multiplication on SE3
virtual void oplusImpl(const double *update) override { Eigen::Matrix<double, 6, 1> update_eigen;
update_eigen << update[0], update[1], update[2], update[3], update[4], update[5]; _estimate = Sophus::SE3d::exp(update_eigen) * _estimate;
} virtual bool read(istream &in) override {} virtual bool write(ostream &out) const override {}
}; /// 边,误差模型 观测维度,观测数据类型, 链接节点类型
class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, VertexPose> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW; EdgeProjectXYZRGBDPoseOnly(const Eigen::Vector3d &point) : _point(point) {} virtual void computeError() override {
//获取姿态估计值
const VertexPose *pose = static_cast<const VertexPose *> ( _vertices[0] );
//计算误差,测量值-转换值
_error = _measurement - pose->estimate() * _point;
} //计算雅可比矩阵
//雅可比矩阵为[I,-P'^]
virtual void linearizeOplus() override {
VertexPose *pose = static_cast<VertexPose *>(_vertices[0]);
Sophus::SE3d T = pose->estimate();
Eigen::Vector3d xyz_trans = T * _point;
//单位矩阵
_jacobianOplusXi.block<3, 3>(0, 0) = -Eigen::Matrix3d::Identity();
//向量到反对称矩阵
_jacobianOplusXi.block<3, 3>(0, 3) = Sophus::SO3d::hat(xyz_trans);
} bool read(istream &in) {} bool write(ostream &out) const {} protected:
Eigen::Vector3d _point;
}; //将顶点和边加入g2o
oid bundleAdjustment(
const vector<Point3f> &pts1,
const vector<Point3f> &pts2,
Mat &R, Mat &t) {
// 构建图优化,先设定g2o
typedef g2o::BlockSolverX BlockSolverType;
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
// 梯度下降方法,可以从GN, LM, DogLeg 中选
auto solver = new g2o::OptimizationAlgorithmLevenberg(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出 // vertex
VertexPose *pose = new VertexPose(); // camera pose
pose->setId(0);
pose->setEstimate(Sophus::SE3d());
optimizer.addVertex(pose); // edges
for (size_t i = 0; i < pts1.size(); i++) {
EdgeProjectXYZRGBDPoseOnly *edge = new EdgeProjectXYZRGBDPoseOnly(
Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z));
edge->setVertex(0, pose);
edge->setMeasurement(Eigen::Vector3d(
pts1[i].x, pts1[i].y, pts1[i].z));
edge->setInformation(Eigen::Matrix3d::Identity());
optimizer.addEdge(edge);
} chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.initializeOptimization();
optimizer.optimize(10);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "optimization costs time: " << time_used.count() << " seconds." << endl; cout << endl << "after optimization:" << endl;
cout << "T=\n" << pose->estimate().matrix() << endl; // convert to cv::Mat
Eigen::Matrix3d R_ = pose->estimate().rotationMatrix();
Eigen::Vector3d t_ = pose->estimate().translation();
R = (Mat_<double>(3, 3) <<
R_(0, 0), R_(0, 1), R_(0, 2),
R_(1, 0), R_(1, 1), R_(1, 2),
R_(2, 0), R_(2, 1), R_(2, 2)
);
t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}

视觉十四讲:第七讲_3D-3D:ICP估计姿态的更多相关文章

  1. 视觉slam十四讲第七章课后习题6

    版权声明:本文为博主原创文章,转载请注明出处: http://www.cnblogs.com/newneul/p/8545450.html 6.在PnP优化中,将第一个相机的观测也考虑进来,程序应如何 ...

  2. 视觉slam十四讲第七章课后习题7

    版权声明:本文为博主原创文章,转载请注明出处:http://www.cnblogs.com/newneul/p/8544369.html  7.题目要求:在ICP程序中,将空间点也作为优化变量考虑进来 ...

  3. 视觉slam学习之路(一)看高翔十四讲所遇到的问题

      目前实验室做机器人,主要分三个方向,定位导航,建图,图像识别,之前做的也是做了下Qt上位机,后面又弄红外识别,因为这学期上课也没怎么花时间在项目,然后导师让我们确定一个方向来,便于以后发论文什么. ...

  4. 浅读《视觉SLAM十四讲:从理论到实践》--操作1--初识SLAM

    下载<视觉SLAM十四讲:从理论到实践>源码:https://github.com/gaoxiang12/slambook 第二讲:初识SLAM 2.4.2 Hello SLAM(书本P2 ...

  5. 高翔《视觉SLAM十四讲》从理论到实践

    目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Ei ...

  6. 高博-《视觉SLAM十四讲》

    0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对 ...

  7. 《视觉SLAM十四讲》第2讲

    目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经 ...

  8. 《视觉SLAM十四讲》第1讲

    目录 一 视觉SLAM 注:原创不易,转载请务必注明原作者和出处,感谢支持! 一 视觉SLAM 什么是视觉SLAM? SLAM是Simultaneous Localization and Mappin ...

  9. 视觉SLAM十四讲:从理论到实践 两版 PDF和源码

    视觉SLAM十四讲:从理论到实践 第一版电子版PDF 链接:https://pan.baidu.com/s/1SuuSpavo_fj7xqTYtgHBfw提取码:lr4t 源码github链接:htt ...

  10. 《SLAM十四讲》个人学习知识点梳理

    0.引言 从六月末到八月初大概一个月时间一直在啃SLAM十四讲[1]这本书,这本书把SLAM中涉及的基本知识点都涵盖了,所以在这里做一个复习,对这本书自己学到的东西做一个梳理. 书本地址:http:/ ...

随机推荐

  1. 数据结构初阶--顺序表(讲解+C++类模板实现)

    顺序的概念与结构 顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储.在数组上完成数据的增删查改. 一般分为两种:静态顺序表和动态顺序表 静态顺序表 #define ...

  2. C温故补缺(十一):文件读写

    文件读写 打开文件 fopen( ) 函数来创建一个新的文件或者打开一个已有的文件 FILE *fopen( const char *filename, const char *mode ); fil ...

  3. python-函数的参数与返回值

    Python函数 4.1.函数初识 在编写程序的过程中,有某一功能代码块出现多次,但是为了提高编写的效率以及代码的重用,所以把具有独立功能的代码块组织为一个小模块,这就是函数 就是一系列Python语 ...

  4. 命令查询职责分离 - CQRS

    概念 CQRS是一种与领域驱动设计和事件溯源相关的架构模式, 它的全称是Command Query Responsibility Segregation, 又叫命令查询职责分离, Greg Young ...

  5. C++编程笔记(通信)(win32平台)

    目录 一.初始化网络库 二.socket套接字 2.1服务端 2.2客户端 三.发送.接收数据 3.1发送 3.2接收数据 四.自定义的结构体 4.1 发送端 4.2接收端 IPV6版本套接字的创建 ...

  6. flutter系列之:flutter中的变形金刚Transform

    目录 简介 Transform简介 Transform的使用 总结 简介 虽然我们在开发APP的过程中是以功能为主,但是有时候为了美观或者其他的特殊的需求,需要对组件进行一些变换.在Flutter中这 ...

  7. java中使用apache poi 读取 doc,docx,ppt,pptx,xls,xlsx,txt,csv格式的文件示例代码

    java使用apache poi 读取 doc,docx,ppt,pptx,xls,xlsx,txt,csv格式的文件示例代码 1.maven依赖添加 在 pom 文件中添加如下依赖 <depe ...

  8. Selenium4+Python3系列(十三) - 与docker中的jenkins持续集成

    前言 文章更新到这一篇时,其实我还是很开心的,因为这也正是这系列教程的最后一篇文章,也算是完成了一个阶段性的小目标,也很感谢那些愿意看我文章与我交流学习的同学,感谢有你们的支持和陪伴. Jenkins ...

  9. 「笔记」某移动SRE运维体系交流

    痛点 传统竖井式IT架构(封闭.隔离.非标.难运维) X86 服务器硬件稳定性不足 开源软件可靠性不足,且不可控 出了故障,被动救火救不完 转型 由此催生了转型升级的需求: 运维智能(SRE)的转型 ...

  10. [攻防世界][江苏工匠杯]easyphp

    打开靶机url,上来就代码审计 <?php highlight_file(__FILE__); $key1 = 0; $key2 = 0; $a = $_GET['a']; $b = $_GET ...