视觉十四讲:第七讲_3D-3D:ICP估计姿态
1.ICP
假设有一组配对好的3D点, \(P={P_{1}, ..., P_{N}}\) , \(P^{'}={P_{1}^{'}, ..., P_{N}^{'}}\)。
有一个欧式变换R,t,使得: \(p_{i} = Rp^{'}_{i} + t\)
该问题可以用迭代最近点(ICP)来求解。注意考虑两组3D点的变换时,和相机没有关系。
ICP求解线性代数的求解(SVD)和非线性优化方式求解(类似于BA)
2.SVD求解:
定义误差项: \(e_{i} = p_{i} - ( Rp^{'}_{i} + t )\)
构建最小二乘问题,使误差平方和达到极小的R,t
定义两组点的质心:
\(p = \frac{1}{n} \sum^{n}_{i=1} (p_{i}), p^{'} = \frac{1}{n} \sum^{n}_{i=1} (p_{i}^{'}),\)
步骤:
计算两组点的质心位置 \(p,p^{'}\),然后再计算每个点的去质心坐标:
\(q_{i} = p_{i} - p, q_{i}^{'} = p_{i}^{'} - p^{'}\)计算 \(R^{*} = argmin \frac{1}{2} \sum^{n}_{i=1} || q_{i} - Rq_{i}^{'} ||^{2}\)
将上式展开,优化函数变为求解 \(-tr( R \sum^{n}_{i=1} q_{i}^{'} q_{i}^{T} )\)
定义 \(W=\sum^{n}_{i=1} q_{i}^{'} q_{i}^{T}\),对W进行SVD分解,得到\(W=U \Sigma V^{T}\)\Sigma 为奇异值组成的对角矩阵,对角线元素从大到小排列,而U和V为正交矩阵。当W满秩时,\(R=UV^{T}\)
根据求出的R,计算t: \(t^{*} = p - Rp^{'}\)
3.代码:
void pose_estimation_3d3d(const vector<Point3f> &pts1,
const vector<Point3f> &pts2,
Mat &R, Mat &t) {
Point3f p1, p2; // center of mass
//求质心
int N = pts1.size();
for (int i = 0; i < N; i++) {
p1 += pts1[i];
p2 += pts2[i];
}
p1 = Point3f(Vec3f(p1) / N);
p2 = Point3f(Vec3f(p2) / N);
vector<Point3f> q1(N), q2(N); // remove the center
//去质心
for (int i = 0; i < N; i++) {
q1[i] = pts1[i] - p1;
q2[i] = pts2[i] - p2;
}
// compute q1*q2^T
Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
for (int i = 0; i < N; i++) {
W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose();
}
cout << "W=" << W << endl;
// SVD on W
Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d V = svd.matrixV();
cout << "U=" << U << endl;
cout << "V=" << V << endl;
Eigen::Matrix3d R_ = U * (V.transpose());
if (R_.determinant() < 0) {
R_ = -R_;
}
Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z);
// convert to cv::Mat
//推导是按第二张图到第一张图的变化,
//此处进行逆变换,即为第一张图到第二张图的变化
R = (Mat_<double>(3, 3) <<
R_(0, 0), R_(0, 1), R_(0, 2),
R_(1, 0), R_(1, 1), R_(1, 2),
R_(2, 0), R_(2, 1), R_(2, 2)
);
t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}
4.非线性优化方法:
/// 节点,优化变量维度和数据类型
class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
//初始化
virtual void setToOriginImpl() override {
_estimate = Sophus::SE3d();
}
//更新估计值
/// left multiplication on SE3
virtual void oplusImpl(const double *update) override {
Eigen::Matrix<double, 6, 1> update_eigen;
update_eigen << update[0], update[1], update[2], update[3], update[4], update[5];
_estimate = Sophus::SE3d::exp(update_eigen) * _estimate;
}
virtual bool read(istream &in) override {}
virtual bool write(ostream &out) const override {}
};
/// 边,误差模型 观测维度,观测数据类型, 链接节点类型
class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, VertexPose> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
EdgeProjectXYZRGBDPoseOnly(const Eigen::Vector3d &point) : _point(point) {}
virtual void computeError() override {
//获取姿态估计值
const VertexPose *pose = static_cast<const VertexPose *> ( _vertices[0] );
//计算误差,测量值-转换值
_error = _measurement - pose->estimate() * _point;
}
//计算雅可比矩阵
//雅可比矩阵为[I,-P'^]
virtual void linearizeOplus() override {
VertexPose *pose = static_cast<VertexPose *>(_vertices[0]);
Sophus::SE3d T = pose->estimate();
Eigen::Vector3d xyz_trans = T * _point;
//单位矩阵
_jacobianOplusXi.block<3, 3>(0, 0) = -Eigen::Matrix3d::Identity();
//向量到反对称矩阵
_jacobianOplusXi.block<3, 3>(0, 3) = Sophus::SO3d::hat(xyz_trans);
}
bool read(istream &in) {}
bool write(ostream &out) const {}
protected:
Eigen::Vector3d _point;
};
//将顶点和边加入g2o
oid bundleAdjustment(
const vector<Point3f> &pts1,
const vector<Point3f> &pts2,
Mat &R, Mat &t) {
// 构建图优化,先设定g2o
typedef g2o::BlockSolverX BlockSolverType;
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
// 梯度下降方法,可以从GN, LM, DogLeg 中选
auto solver = new g2o::OptimizationAlgorithmLevenberg(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出
// vertex
VertexPose *pose = new VertexPose(); // camera pose
pose->setId(0);
pose->setEstimate(Sophus::SE3d());
optimizer.addVertex(pose);
// edges
for (size_t i = 0; i < pts1.size(); i++) {
EdgeProjectXYZRGBDPoseOnly *edge = new EdgeProjectXYZRGBDPoseOnly(
Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z));
edge->setVertex(0, pose);
edge->setMeasurement(Eigen::Vector3d(
pts1[i].x, pts1[i].y, pts1[i].z));
edge->setInformation(Eigen::Matrix3d::Identity());
optimizer.addEdge(edge);
}
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.initializeOptimization();
optimizer.optimize(10);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
cout << endl << "after optimization:" << endl;
cout << "T=\n" << pose->estimate().matrix() << endl;
// convert to cv::Mat
Eigen::Matrix3d R_ = pose->estimate().rotationMatrix();
Eigen::Vector3d t_ = pose->estimate().translation();
R = (Mat_<double>(3, 3) <<
R_(0, 0), R_(0, 1), R_(0, 2),
R_(1, 0), R_(1, 1), R_(1, 2),
R_(2, 0), R_(2, 1), R_(2, 2)
);
t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}
视觉十四讲:第七讲_3D-3D:ICP估计姿态的更多相关文章
- 视觉slam十四讲第七章课后习题6
版权声明:本文为博主原创文章,转载请注明出处: http://www.cnblogs.com/newneul/p/8545450.html 6.在PnP优化中,将第一个相机的观测也考虑进来,程序应如何 ...
- 视觉slam十四讲第七章课后习题7
版权声明:本文为博主原创文章,转载请注明出处:http://www.cnblogs.com/newneul/p/8544369.html 7.题目要求:在ICP程序中,将空间点也作为优化变量考虑进来 ...
- 视觉slam学习之路(一)看高翔十四讲所遇到的问题
目前实验室做机器人,主要分三个方向,定位导航,建图,图像识别,之前做的也是做了下Qt上位机,后面又弄红外识别,因为这学期上课也没怎么花时间在项目,然后导师让我们确定一个方向来,便于以后发论文什么. ...
- 浅读《视觉SLAM十四讲:从理论到实践》--操作1--初识SLAM
下载<视觉SLAM十四讲:从理论到实践>源码:https://github.com/gaoxiang12/slambook 第二讲:初识SLAM 2.4.2 Hello SLAM(书本P2 ...
- 高翔《视觉SLAM十四讲》从理论到实践
目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Ei ...
- 高博-《视觉SLAM十四讲》
0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对 ...
- 《视觉SLAM十四讲》第2讲
目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经 ...
- 《视觉SLAM十四讲》第1讲
目录 一 视觉SLAM 注:原创不易,转载请务必注明原作者和出处,感谢支持! 一 视觉SLAM 什么是视觉SLAM? SLAM是Simultaneous Localization and Mappin ...
- 视觉SLAM十四讲:从理论到实践 两版 PDF和源码
视觉SLAM十四讲:从理论到实践 第一版电子版PDF 链接:https://pan.baidu.com/s/1SuuSpavo_fj7xqTYtgHBfw提取码:lr4t 源码github链接:htt ...
- 《SLAM十四讲》个人学习知识点梳理
0.引言 从六月末到八月初大概一个月时间一直在啃SLAM十四讲[1]这本书,这本书把SLAM中涉及的基本知识点都涵盖了,所以在这里做一个复习,对这本书自己学到的东西做一个梳理. 书本地址:http:/ ...
随机推荐
- UBOOT编译--- UBOOT顶层Makefile中目标_all和all的关系及背景(四)
@ 目录 1. 前言 2. 概述 3. 老版本UBOOT(背景) 4. 新版本UBOOT 5. 参考 1. 前言 UBOOT版本:uboot2018.03,开发板myimx8mmek240. 2. 概 ...
- Solon v1.11.0 发布,Hello Java
一个更现代感的 Java 应用开发框架:更快.更小.更自由.没有 Spring,没有 Servlet,没有 JavaEE:独立的轻量生态.主框架仅 0.1 MB. @Controller public ...
- 【Hive】概念、安装、数据类型、DDL、DML操作、查询操作、函数、压缩存储、分区分桶、实战Top-N、调优(fetch抓取)、执行计划
一.概念 1.介绍 基于Hadoop的数据仓库工具,将结构化数据映射为一张表,可以通过类SQL方式查询 本质:将HQL转换成MapReduce程序 Hive中具有HQL对应的MapReduce模板 存 ...
- bug处理记录:Error running 'WorkflowApplication': Command line is too long. Shorten command line for WorkflowApplication or also for Spring Boot default configuration?
1.报错信息 Error running 'WorkflowApplication': Command line is too long. Shorten command line for Workf ...
- ChatGPT 加图数据库 NebulaGraph 预测 2022 世界杯冠军球队
一次利用 ChatGPT 给出数据抓取代码,借助 NebulaGraph 图数据库与图算法预测体坛赛事的尝试. 作者:古思为 蹭 ChatGPT 热度 最近因为世界杯正在进行,我受到这篇 Cambri ...
- openresty package path
openresty lua_package_path 是整个openresty最基础的功能,不理解 path就无法做项目,更无法写框架. 先看下文档lua_package_path https://g ...
- ORM增删改查 django请求生命周期图 django路由层及反向解析
目录 可视化界面之数据增删改查 1.建表 2.数据展示功能 3.数据添加功能 4.数据编辑功能 5.数据删除功能 django请求生命周期流程图 django路由层 1.路由匹配 2.转换器功能 pa ...
- css处理渲染的图片变形问题:object-fit: cover
object-fit: cover完美解决!~
- kali安装拼音输入法
前言 最近使用kali感觉没个中文输入法的很不方便,于是决定装个ibus的拼音输入法 安装方法 1.安装ibus 使用命令apt install ibus ibus-pinyin,注意使用root权限 ...
- 8、ThreadPoolTaskExecutor线程并发
一.线程池的优点: 1.降低资源消耗.通过重复利用自己创建的线程降低线程创建和销毁造成的消耗. 2.提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行. 3.提高线程的可管理性.线程是 ...