1、默认的分词器

关于分词器,前面的博客已经有介绍了,链接:ElasticSearch7.3 学习之倒排索引揭秘及初识分词器(Analyzer)。这里就只介绍默认的分词器standard analyzer

2、 修改分词器的设置

首先自定义一个分词器es_std。启用english停用词token filter

PUT /my_index
{
"settings": {
"analysis": {
"analyzer": {
"es_std": {
"type": "standard",
"stopwords": "_english_"
}
}
}
}
}

返回:

接下来开始测试两种不同的分词器,首先是默认的分词器

GET /my_index/_analyze
{
"analyzer": "standard",
"text": "a dog is in the house"
}

返回结果

{
"tokens" : [
{
"token" : "a",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "dog",
"start_offset" : 2,
"end_offset" : 5,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "is",
"start_offset" : 6,
"end_offset" : 8,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "in",
"start_offset" : 9,
"end_offset" : 11,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "the",
"start_offset" : 12,
"end_offset" : 15,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "house",
"start_offset" : 16,
"end_offset" : 21,
"type" : "<ALPHANUM>",
"position" : 5
}
]
}

可以看到就是简单的按单词进行拆分,在接下来测试上面自定义的一个分词器es_std

GET /my_index/_analyze
{
"analyzer": "es_std",
"text":"a dog is in the house"
}

返回:

{
"tokens" : [
{
"token" : "dog",
"start_offset" : 2,
"end_offset" : 5,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "house",
"start_offset" : 16,
"end_offset" : 21,
"type" : "<ALPHANUM>",
"position" : 5
}
]
}

可以看到结果只有两个单词了,把停用词都给去掉了。

3、定制化自己的分词器

首先删除掉上面建立的索引

DELETE my_index

然后运行下面的语句。简单说下下面的规则吧,首先去除html标签,把&转换成and,然后采用standard进行分词,最后转换成小写字母及去掉停用词a the,建议读者好好看看,下面我也会对这个分词器进行测试。

PUT /my_index
{
"settings": {
"analysis": {
"char_filter": {
"&_to_and": {
"type": "mapping",
"mappings": [
"&=> and"
]
}
},
"filter": {
"my_stopwords": {
"type": "stop",
"stopwords": [
"the",
"a"
]
}
},
"analyzer": {
"my_analyzer": {
"type": "custom",
"char_filter": [
"html_strip",
"&_to_and"
],
"tokenizer": "standard",
"filter": [
"lowercase",
"my_stopwords"
]
}
}
}
}
}

返回

{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_index"
}

老规矩,测试这个分词器

GET /my_index/_analyze
{
"analyzer": "my_analyzer",
"text": "tom&jerry are a friend in the house, <a>, HAHA!!"
}

结果如下:

{
"tokens" : [
{
"token" : "tomandjerry",
"start_offset" : 0,
"end_offset" : 9,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "are",
"start_offset" : 10,
"end_offset" : 13,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "friend",
"start_offset" : 16,
"end_offset" : 22,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "in",
"start_offset" : 23,
"end_offset" : 25,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "house",
"start_offset" : 30,
"end_offset" : 35,
"type" : "<ALPHANUM>",
"position" : 6
},
{
"token" : "haha",
"start_offset" : 42,
"end_offset" : 46,
"type" : "<ALPHANUM>",
"position" : 7
}
]
}

最后我们可以在实际使用时设置某个字段使用自定义分词器,语法如下:

PUT /my_index/_mapping/
{
"properties": {
"content": {
"type": "text",
"analyzer": "my_analyzer"
}
}
}

ElasticSearch7.3 学习之定制分词器(Analyzer)的更多相关文章

  1. ElasticSearch7.3 学习之倒排索引揭秘及初识分词器(Analyzer)

    一.倒排索引 1. 构建倒排索引 例如说有下面两个句子doc1,doc2 doc1:I really liked my small dogs, and I think my mom also like ...

  2. Lucene.net(4.8.0) 学习问题记录一:分词器Analyzer的构造和内部成员ReuseStategy

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...

  3. Lucene学习-深入Lucene分词器,TokenStream获取分词详细信息

    Lucene学习-深入Lucene分词器,TokenStream获取分词详细信息 在此回复牛妞的关于程序中分词器的问题,其实可以直接很简单的在词库中配置就好了,Lucene中分词的所有信息我们都可以从 ...

  4. es的分词器analyzer

    analyzer   分词器使用的两个情形:  1,Index time analysis.  创建或者更新文档时,会对文档进行分词2,Search time analysis.  查询时,对查询语句 ...

  5. Lucene.net(4.8.0)+PanGu分词器问题记录一:分词器Analyzer的构造和内部成员ReuseStategy

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...

  6. Elasticsearch:定制分词器(analyzer)及相关性

    转载自:https://elasticstack.blog.csdn.net/article/details/114278163 在许多的情况下,我们使用现有的分词器已经足够满足我们许多的业务需求,但 ...

  7. Lucene.net(4.8.0) 学习问题记录二: 分词器Analyzer中的TokenStream和AttributeSource

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...

  8. es学习(三):分词器介绍以及中文分词器ik的安装与使用

    什么是分词 把文本转换为一个个的单词,分词称之为analysis.es默认只对英文语句做分词,中文不支持,每个中文字都会被拆分为独立的个体. 示例 POST http://192.168.247.8: ...

  9. ElasticSearch7.3 学习之定制动态映射(dynamic mapping)

    1.dynamic mapping ElasticSearch中有一个非常重要的特性--动态映射,即索引文档前不需要创建索引.类型等信息,在索引的同时会自动完成索引.类型.映射的创建. 当ES在文档中 ...

随机推荐

  1. 有序取出Map集合的元素

    最近写到一个程序,返回了map,但是经过查阅资料,map是没有顺序的,各种查阅资料无果,最后自己写了这个方法.. 1,通过map集合的keySet()方法,获取到一个包含map所有key的Set集合 ...

  2. 基于GDAL库,读取.grd文件(以海洋地形数据为例)C++版

    技术背景 海洋地形数据主要是通过美国全球地形起伏数据(GMT)获得,数据格式为grd(GSBG)二进制数据,打开软件通过是Surfer软件,surfer软件可进行数据的编辑处理,以及进一步的可视化表达 ...

  3. KC705E增强版基于FMC接口的 Kintex-7 XC7K325T PCIeX8 接口卡

    一.板卡概述 本板卡基于Xilinx公司的FPGAXC7K325T-2FFG900 芯片,pin_to_pin兼容FPGAXC7K410T-2FFG900 ,支持PCIeX8.64bit DDR3容量 ...

  4. Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy

    \(\mathcal{Description}\)   Link.(完全一致)   给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...

  5. Unreal ListView使用篇

    应用 ListView,在Unreal UI界面开发中用途非常广泛,基本只要你使用列表,就得需要用ListView.比如排行榜100个列表,界面上只需要显示出10个,我们肯定不能生成100个ui实例, ...

  6. 详解Spring DI循环依赖实现机制

    一个对象引用另一个对象递归注入属性即可实现后续的实例化,同时如果两个或者两个以上的 Bean 互相持有对⽅,最终形成闭环即所谓的循环依赖怎么实现呢属性的互相注入呢? Spring bean生命周期具体 ...

  7. JVM学习——字节码(学习过程)

    JVM--字节码 为什么要学字节码 字节码文件,有什么用? JVM虚拟机的特点:一处编译,多处运行. 多处运行,靠的是.class 字节码文件. JVM本身,并不是跨平台的.Java之所以跨平台,是因 ...

  8. 图解AI数学基础 | 概率与统计

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-det ...

  9. Centos7使用kubeadm安装1.23.1版本的k8s集群

    系统环境 #cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core) #Linux内核一定要大约等于3.10,也就是centos版本要大 ...

  10. 【C# .Net GC】后台垃圾回收

    在后台垃圾回收 (GC) 中,在进行第 2 代回收的过程中,将会根据需要收集暂时代(第 0 代和第 1 代). 后台垃圾回收是在一个或多个专用线程上执行的,具体取决于它是后台还是服务器 GC,它只适用 ...