单一资产VAR风险--基于python
数据源:使用 AKShare包。它是一个免费、开源的 Python 财经数据接口包。网址https://www.akshare.xyz/index.html
一、获取数据:
计算日收益率:
import pandas as pd
import numpy as np
import akshare as ak
# 读入中国平安 「000001」 2015-01-01 到 2021-12-31 日收盘价数据
data = ak.stock_zh_a_hist(symbol="000001", period="daily", start_date="20150101", end_date='20211231', adjust="")
data.index = pd.to_datetime(data['日期'],format='%Y-%m-%d') #设置日期索引
close = data['收盘'] #日收盘价
ret = np.log(close/close.shift(1)) #日收益率
ret = ret.dropna()
二、方差-协方差法:
value = 1000000 #中国平安股票价值为100万元
R_mean = ret.mean() #计算均值
R_vol = ret.std() #计算标准差 def VaR_VCM(value,mu,sig,X,T):
'''
Parameters
----------
value : 资产的价值
mu : 资产的日均收益率
sig : 资产的日均波动率(标准差)
X : 置信水平
T : 持有天数
'''
z = abs(st.norm.ppf(q=1-X))
return np.sqrt(T)*value*(z*sig-mu) VaR99_1day_VCM = VaR_VCM(value,R_mean,R_vol, 0.99, 1)
VaR99_10day_VCM = VaR_VCM(value,R_mean,R_vol, 0.99, 10)
VaR95_1day_VCM = VaR_VCM(value,R_mean,R_vol, 0.95, 1)
VaR95_10day_VCM = VaR_VCM(value,R_mean,R_vol,0.95, 10) print(f'方差-协方差法1天、99%的VaR:{VaR99_1day_VCM/10000:.2f}万元')
print(f'方差-协方差法10天、99%的VaR:{VaR99_10day_VCM/10000:.2f}万元')
print(f'方差-协方差法1天、95%的VaR:{VaR95_1day_VCM/10000:.2f}万元')
print(f'方差-协方差法10天、95%的VaR:{VaR95_10day_VCM/10000:.2f}万元')
三、历史模拟法:
value = 1000000 #中国平安股票价值为100万元 def VaR_history(value,ret,X,T):
'''
Parameters
----------
value : 资产的价值
ret : 资产的日收益率序列
X : 置信水平
T : 持有天数
'''
# Numpy 的 percentile 函数,可以直接返回序列相应的分位数
return value*np.sqrt(T)*abs(np.percentile(ret,(1-X)*100)) VaR99_1day_history = VaR_history(value,ret,0.99,1)
VaR99_10day_history = VaR_history(value,ret,0.99,10)
VaR95_1day_history = VaR_history(value,ret,0.95,1)
VaR95_10day_history = VaR_history(value,ret,0.95,10) print(f'历史模拟法1天、99%的VaR:{VaR99_1day_history/10000:.2f}万元')
print(f'历史模拟法10天、99%的VaR:{VaR99_10day_history/10000:.2f}万元')
print(f'历史模拟法1天、95%的VaR:{VaR95_1day_history/10000:.2f}万元')
print(f'历史模拟法10天、95%的VaR:{VaR95_10day_history/10000:.2f}万元')
四、蒙特卡罗模拟法:
value = 1000000 #中国平安股票价值为100万元 m = 10000 #模拟次数
e1 = np.random.standard_t(df=len(ret),size=m) #自由度为收益率数据长度的t分布
#e1 = np.random.standard_normal(size=m) #若服从正态分布,则此代码代替上行代码
R_mean_year = ret.mean()*252 #计算每一资产的年化平均收益率
R_vol_year = ret.std()*np.sqrt(252) #计算每一资产的年化波动率
dt=1/252 #时间间隔
S0=1
S=np.zeros(m) #存放模拟次数个模拟价格数据
#代入随机过程
S=S0*(np.exp((R_mean_year-0.5*R_vol_year**2)*dt+R_vol_year*e1*np.sqrt(dt)))
F_ret=S/S0-1 #模拟未来收益率 #蒙特卡洛模拟法计算VaR
VaR99_1day_MS = value*abs(np.percentile(F_ret,1))
VaR99_10day_MS = np.sqrt(10)*VaR99_1day_MS
VaR95_1day_MS = value*abs(np.percentile(F_ret,5))
VaR95_10day_MS = np.sqrt(10)*VaR95_1day_MS #由于抽样随机数的原因,结果可能会有不同
print(f'蒙特卡罗模拟法1天、99%的VaR:{VaR99_1day_MS/10000:.2f}万元')
print(f'蒙特卡罗模拟法10天、99%的VaR:{VaR99_10day_MS/10000:.2f}万元')
print(f'蒙特卡罗模拟法1天、95%的VaR:{VaR95_1day_MS/10000:.2f}万元')
print(f'蒙特卡罗模拟法10天、95%的VaR:{VaR95_10day_MS/10000:.2f}万元')
单一资产VAR风险--基于python的更多相关文章
- 基于python深度学习的apk风险预测脚本
基于python深度学习的apk风险预测脚本 为了有效判断安卓apk有无恶意操作,利用python脚本,通过解包apk文件,对其中xml文件进行特征提取,通过机器学习构建模型,预测位置的apk包是否有 ...
- selenium2自动化测试实战--基于Python语言
自动化测试基础 一. 软件测试分类 1.1 根据项目流程阶段划分软件测试 1.1.1 单元测试 单元测试(或模块测试)是对程序中的单个子程序或具有独立功能的代码段进行测试的过程. 1.1.2 集成测试 ...
- 从Theano到Lasagne:基于Python的深度学习的框架和库
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...
- 符号执行-基于python的二进制分析框架angr
转载:All Right 符号执行概述 在学习这个框架之前首先要知道符号执行.符号执行技术使用符号值代替数字值执行程序,得到的变量的值是由输入变 量的符号值和常量组成的表达式.符号执行技术首先由Kin ...
- Python 基于python操纵redis入门介绍
基于python操纵redis入门介绍 by:授客 QQ:1033553122 测试环境 redis-3.0.7 CentOS 6.5-x86_64 python 3.3.2 基于Python操作R ...
- Websocket - Websocket原理(握手、解密、加密)、基于Python实现简单示例
一.Websocket原理(握手.解密.加密) WebSocket协议是基于TCP的一种新的协议.WebSocket最初在HTML5规范中被引用为TCP连接,作为基于TCP的套接字API的占位符.它实 ...
- 看我如何基于Python&Facepp打造智能监控系统
由于种种原因,最近想亲自做一个基于python&facepp打造的智能监控系统. 0×00:萌芽 1:暑假在家很无聊 想出去玩,找不到人.玩个lol(已卸载),老是坑人.实在是无聊至极,不过, ...
- TriAquae 是一款由国产的基于Python开发的开源批量部署管理工具
怀着鸡动的心情跟大家介绍一款国产开源运维软件TriAquae,轻松帮你搞定大部分运维工作!TriAquae 是一款由国产的基于Python开发的开源批量部署管理工具,可以允许用户通过一台控制端管理上千 ...
- 基于Python的SQL Server数据库对象同步轻量级实现
缘由 日常工作中经常遇到类似的问题:把某个服务器上的某些指定的表同步到另外一台服务器.类似需求用SSIS或者其他ETL工作很容易实现,比如用SSIS的话就可以,但会存在相当一部分反复的手工操作.建源的 ...
- 通过nginx搭建基于python的web环境
前言: 在搭建开始前,我们先来梳理下web服务工作流程,先看下图: 1.用户(PC)向web服务器发起http请求 2.web服务器判断用户请求文件是否为静态文件,是则直接读取静态文件并返回给用户,不 ...
随机推荐
- 回溯法求解n皇后问题(复习)
回溯法 回溯法是最常用的解题方法,有"通用的解题法"之称.当要解决的问题有若干可行解时,则可以在包含问题所有解的空间树中,按深度优先的策略,从根节点出发搜索解空间树.算法搜索至解空 ...
- redis集合 实现 队列
先说一下需求:用队列解决 流量削峰,主要应用场景:商城秒杀功能. 以下是业务流程图可以参考一下: 然后本地实现思路 截图下单页面 每次购买数量会减少1,设置了1000个库存,用户id 是随机生成的. ...
- Ubuntu:Docker 容器操作
创建容器 1.docker run [option] 镜像名 [向启动容器中传入的命令] 常用可选说明 -i 表示以"交互模式"运行容器 -t 表示容器启动后会进入其命令行.加入这 ...
- 分享.net framework4.0无法安装的几种处理方案.
[关于.net framework4.0安装失败]-------------)方案1:http://www.win7xtzj.com/win10jiaocheng/39834.html 关键词: -- ...
- [seaborn] seaborn学习笔记5-小提琴图VIOLINPLOT
文章目录 5 小提琴图Violinplot 1. 基础小提琴图绘制 Basic violinplot 2. 小提琴图样式自定义 Custom seaborn violinplot 3. 小提琴图颜色自 ...
- Shiro-721反序列化漏洞
漏洞名称 Shiro-721(Apache Shiro Padding Oracle Attack)反序列化 利用条件 Apache Shiro < 1.4.2 漏洞原理 Apache Shir ...
- 《Effective C++》设计与声明章节
Item18:让接口容易被正确使用,不易被误用 总结: 1.好的接口很容易被正确使用,不容易被误用.你应该在你的所有接口中努力达到这些性质. 2."促进正确使用"的办法包括接口的一 ...
- C#调用js库的方法
前言 用.net6开发一个Winform程序,处理Excel文件,并把结果导出Excel文件. 要用到两个算法,一是turf.js库的booleanPointInPolygon方法,判断经纬度坐标是否 ...
- win32com操作word 第三集:Range精讲(一)
本课程<win32com操作word API精讲&项目实战>,本公众号以文字分享为主,B站与视频号则发布视频分享,ID均为:一灯编程 本集开始,将会深入Document接口.打开或 ...
- Blazor入门100天 : 身份验证和授权 (2) - 角色/组件/特性/过程逻辑
目录 建立默认带身份验证 Blazor 程序 `角色/组件/特性/过程逻辑 DB 改 Sqlite 将自定义字段添加到用户表 脚手架拉取IDS文件,本地化资源 freesql 生成实体类,freesq ...