比赛链接

A

题解

知识点:贪心,构造。

注意到有 \(1\) 就一定能构造。

时间复杂度 \(O(n)\)

空间复杂度 \(O(1)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n, k;
cin >> n >> k;
bool ok = 0;
for (int i = 1;i <= n;i++) {
int x;
cin >> x;
ok |= x;
}
if (ok) cout << "YES" << '\n';
else cout << "NO" << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

B

题解

知识点:枚举,双指针。

用对撞指针,枚举左侧 \(1\) 和 右侧 \(0\) ,一次操作能消除一对。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int a[100007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
int l = 1, r = n;
int cnt = 0;
while (l <= r) {
while (l <= r && a[l] == 0)l++;
while (l <= r && a[r] == 1)r--;
if (l <= r) {
l++;
r--;
cnt++;
}
}
cout << cnt << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

C

题解

知识点:枚举。

容易发现,我们可以通过操作将序列变成非减序列,只要我们从左到右操作每组 \(a_i<a_{i-1}\) 的 \(a_i\) ,使 \(a_i \geq a_{i-1}\) 。这样的相邻数对之差大于 \(i\) 的不会超过 \(n-i\) 组,即第 \(i\) 次操作修改的一定小于等于 \(i\) ,因此我们一定可以通过 \(n\) 次操作修改所有这样的数对。

把所有相邻两数的差带着下标从小到大排序输出下标就行。

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int a[100007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
vector<pair<int, int>> v;
v.push_back({ 0,1 });
for (int i = 2;i <= n;i++) {
v.push_back({ a[i - 1] - a[i], i });
}
sort(v.begin(), v.end());
for (auto [i, j] : v) cout << j << ' ';
cout << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

D

题解

知识点:树形dp,贪心。

此题重点在于如何分配路径到子节点。

显然,为了保证子节点路径数至多相差 \(1\) ,若父节点有 \(p\) 或 \(p+1\) 条路径,那么 \(s\) 个子节点可能的路径数只有 \(\lfloor \frac{p}{s} \rfloor\) 或 \(\lfloor \frac{p}{s} \rfloor + 1\) 。

  1. \(s>2\) 和 \(s=1\) 时,显然成立。
  2. \(s = 2\) 时, \(p\) 能被整除时显然成立。
  3. \(s = 2\) 时, \(p\) 不能被整除时 \(p+1\) 一定能被整除,但只有 \(\lfloor \frac{p}{s} \rfloor + 1\) 一种合法情况,\(p\) 有 \(\lfloor \frac{p}{s} \rfloor\) 或 \(\lfloor \frac{p}{s} \rfloor + 1\) 两种,同样成立。

我们知道了子节点可能分配到路径后,对分配方法进行dp就行。

设 \(f[u][0/1]\) ,表示对于节点 \(u\) 的子树, \(u\) 具有路径数为 \(p\) 或 \(p+1\) 时,子树的总贡献。对于 \(f[u][0/1]\) ,先加上 \(u\) 本身的贡献,以及子节点 \(v\) 路径数为 \(\lfloor \frac{p}{s} \rfloor\) 的一种贡献,即 \(f[v][0]\) ,这是子节点都能分配到的。

然后,对于 \(f[u][0]\) ,可以给 \(p \mod s\) 个子节点多分配一条路径;对于 \(f[u][1]\) 可以给 \((p+1) \mod s\) 个子节点多分配一条路径。这些子节点的贡献可以加一个增量 \(f[v][1]-f[v][0]\) ,我们按照这个增量排序,就能找到增量最大的几个子节点,我们给它们分配即可。

最后输出 \(f[1][0]\) ,根节点没有多一条路径的选择。

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; vector<int> g[200007];
int s[200007];
ll f[200007][2];
void dfs(int u, int p) {
f[u][0] = 1LL * p * s[u];
f[u][1] = f[u][0] + s[u];
if (!g[u].size()) return;
vector<ll> tb;
for (auto v : g[u]) {
dfs(v, p / g[u].size());
f[u][0] += f[v][0];
f[u][1] += f[v][0];
tb.push_back(f[v][1] - f[v][0]);
}
sort(tb.begin(), tb.end(), [&](ll a, ll b) {return a > b;});
int r = p % g[u].size();
for (int i = 0;i < r;i++) f[u][0] += tb[i];
for (int i = 0;i <= r;i++) f[u][1] += tb[i];
} bool solve() {
int n, k;
cin >> n >> k;
for (int i = 1;i <= n;i++) g[i].clear();
for (int i = 2;i <= n;i++) {
int p;
cin >> p;
g[p].push_back(i);
}
for (int i = 1;i <= n;i++) cin >> s[i];
dfs(1, k);
cout << f[1][0] << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

Codeforces Global Round 23 A-D的更多相关文章

  1. Codeforces Global Round 23 D.Paths on the Tree(记忆化搜索)

    https://codeforces.ml/contest/1746/problem/D 题目大意:一棵n节点有根树,根节点为1,分别有两个数组 s[i] 顶点 i 的魅力值 c[i] 覆盖顶点 i ...

  2. CodeForces Global Round 1

    CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...

  3. Codeforces Global Round 1 - D. Jongmah(动态规划)

    Problem   Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...

  4. Codeforces Global Round 2 题解

    Codeforces Global Round 2 题目链接:https://codeforces.com/contest/1119 A. Ilya and a Colorful Walk 题意: 给 ...

  5. Codeforces Global Round 1 (A-E题解)

    Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...

  6. Codeforces Global Round 3

    Codeforces Global Round 3 A. Another One Bites The Dust 有若干个a,有若干个b,有若干个ab.你现在要把这些串拼成一个串,使得任意两个相邻的位置 ...

  7. Codeforces Global Round 1 (CF1110) (未完结,只有 A-F)

    Codeforces Global Round 1 (CF1110) 继续补题.因为看见同学打了这场,而且涨分还不错,所以觉得这套题目可能会比较有意思. 因为下午要开学了,所以恐怕暂时不能把这套题目补 ...

  8. 【手抖康复训练1 】Codeforces Global Round 6

    [手抖康复训练1 ]Codeforces Global Round 6 总结:不想复习随意打的一场,比赛开始就是熟悉的N分钟进不去时间,2333,太久没写题的后果就是:A 题手抖过不了样例 B题秒出思 ...

  9. Codeforces Global Round 11 个人题解(B题)

    Codeforces Global Round 11 1427A. Avoiding Zero 题目链接:click here 待补 1427B. Chess Cheater 题目链接:click h ...

随机推荐

  1. error setting certificate verify locations

    描述 在使用 git clone 克隆 GitHub 或者 Gitee 上的项目时,报如下错误: error setting certificate verify locations: CAfile: ...

  2. ASP.NET Core自定义中间件的方式

    ASP.NET Core应用本质上,其实就是由若干个中间件构建成的请求处理管道.管道相当于一个故事的框架,而中间件就相当于故事中的某些情节.同一个故事框架采用不同的情节拼凑,最终会体现出不同风格的故事 ...

  3. 【HMS core】【FAQ】典型问题合集7

    ​1.[HMS core][Account Kit][问题描述] 集成华为帐号服务后,登录服务异常,无法获取用户信息,报statusCode为907135001,抓取报错日志:Failed to re ...

  4. 简单创建一个SpringCloud2021.0.3项目(三)

    目录 1. 项目说明 1. 版本 2. 用到组件 3. 功能 2. 上俩篇教程 3. Gateway集成sentinel,网关层做熔断降级 1. 超时熔断降级 2. 异常熔断 3. 集成sentine ...

  5. 网站优化,dns预解析,解析缓存

    DNS Prefetch 是一种 DNS 预解析技术.当你浏览网页时,浏览器会在加载网页时对网页中的域名进行解析缓存,这样在你单击当前网页中的连接时就无需进行 DNS 的解析,减少用户等待时间,提高用 ...

  6. angr原理与实践(二)—— 各类图的生成(CFG CG ACFG DDG等)

    ​  本文系原创,转载请说明出处 Please Subscribe Wechat Official Account:信安科研人,获取更多的原创安全资讯 上一篇文章介绍了angr的原理,自此篇文章开始, ...

  7. 为什么最近每份 Android 简历都说 “熟悉 MQTT 协议”?

    请点赞关注,你的支持对我意义重大. Hi,我是小彭.本文已收录到 GitHub · AndroidFamily 中.这里有 Android 进阶成长知识体系,有志同道合的朋友,关注公众号 [彭旭锐] ...

  8. SpringBoot Xml转Json对象

    一.导入需要的依赖 <dependency> <groupId>maven</groupId> <artifactId>dom4j</artifa ...

  9. 工具推荐-使用RedisInsight工具对Redis集群CURD操作及数据可视化和性能监控

    关注「WeiyiGeek」公众号 设为「特别关注」每天带你玩转网络安全运维.应用开发.物联网IOT学习! 希望各位看友[关注.点赞.评论.收藏.投币],助力每一个梦想. 本章目录 目录 0x00 快速 ...

  10. Traefik 2.0 实现自动化 HTTPS

    文章转载自:https://mp.weixin.qq.com/s?__biz=MzU4MjQ0MTU4Ng==&mid=2247484457&idx=1&sn=35112e98 ...